Abstract:
In a control device for a power supply circuit in which a plurality of high-voltage battery packs are provided, if any one of safety switch is off, the startup state of a high-voltage circuit is totally prevented, even when a careless mistake such as a careless power-on (ON) operation is made, the circuit is prevented from being started, and also the overall power supply is cut off by turning off (OFF) one safety switch, thereby improving the convenience of work. Voltage sensing units (9-1 to 9-n) that sense internal voltages are provided in battery packs (4-1 to 4-n) to detect a voltage change based on the operation of one or more safety switches (8-1 to 8-n) and maintain all relays (5-1 to 5-n) of the plurality of battery packs (4-1 to 4-n) provided in parallel in an open (OPEN) state.
Abstract:
Embodiments relate to fault detection comparator circuitry and methods that can operate in conjunction with a power-on-reset (POR) scheme to put a chip into a reliable power-down mode upon fault detection to avoid disrupting the communication bus link such that other connected chips and the host can continue to operate. Power-on of the affected chip can then be carried out when the connection with that chip is restored.
Abstract:
A voltage sensing device automatically scales the source and network phase voltages of a power distribution system having one of two operating voltages for input to a network protector relay and also automatically scales a voltage for operating the trip and close circuit of the circuit breaker in the network protector. A latching tap select relay only switches the system voltages to the lower operating voltage input taps of step down transformers after a short delay if all the system voltages are in the lower operating range. A diagnostic circuit verifies proper switch position and voltages before closing output contacts to connect the scaled voltages to the relay and circuit breaker.
Abstract:
An electronic ballast for at least one gas discharge lamp (LA), preferably for a fluorescent tube, having a rectifier circuit (2) connectable to a supply voltage source, a smoothing circuit (3) connected to the output of the rectifier circuit (2) for generating an intermediate circuit voltage (UZ), and an inverter (4), fed with the intermediate circuit voltage (UZ), to the output of which a terminal for the load circuit (5) containing the lamp (LA) is connected, and an overvoltage monitoring device which monitors the supply voltage (U0) delivered to the electronic ballast, whereby in the event that the supply voltage exceeds a predetermined nominal value (Ui,max), an optically or acoustically perceptible warning signal is issued.
Abstract:
A voltage sensing device automatically scales the source and network phase voltages of a power distribution system having one of two operating voltages for input to a network protector relay and also automatically scales a voltage for operating the trip and close circuit of the circuit breaker in the network protector. A latching tap select relay only switches the system voltages to the lower operating voltage input taps of step down transformers after a short delay if all the system voltages are in the lower operating range. A diagnostic circuit verifies proper switch position and voltages before closing output contacts to connect the scaled voltages to the relay and circuit breaker.
Abstract:
The present invention relates to a hard disk drive system having overvoltage protection circuits for various types of overvoltage conditions. For example, the system comprises one or more hard disk drive integrated circuit chips residing on a board and a hard disk drive power plug receptacle residing on the board having two different value power supply ports associated therewith. The receptacle is operable to receive a power plug therein, wherein when the power plug is inserted therein in a proper orientation the two different value voltages are properly supplied to the one or more hard disk drive integrated circuit chips, and wherein when the power plug is inserted therein in an improper orientation the two different value voltages are switched with respect to their intended values. The system comprises a reverse power plug orientation protection circuit coupled between the hard disk drive power plug receptacle and at least one of the one or more hard disk drive integrated circuit chips. The protection circuit is operable to detect an improper orientation of the power plug when inserted into the hard disk drive power plug receptacle and reduce a larger of the two different voltage values, thereby preventing an electrical over voltage stress of the at least one hard disk drive integrated circuit chip.
Abstract:
An image forming apparatus having a built in AC voltage control circuit which enables the apparatus to be used in regions of the world having commercial power supplies with different supply voltages. The AC voltage control circuit first compares the input voltage to a reference voltage and then performs a switching operation to ensure that the voltage supplied to the AC electric components of the image forming apparatus is the voltage necessary for operation of those components.
Abstract:
A power system comprises a power source, a transmission line coupled to the power source through a circuit breaker, a shunt reactor coupled to the transmission line, and a current transformer connected in series with the shunt reactor. A method for controlling the circuit breaker of the power system comprises processing an output signal of the current transformer to obtain the voltage on the transmission line by determining a time derivative of a current sensed by the current transformer. The method further comprises performing, by at least one control or protection device, a control or protection operation (e.g., auto-reclosing) based on the determined time derivative of the current sensed by the current transformer.
Abstract:
The voltage detection apparatus includes a transformer, in which a primary side and a secondary side are insulated from each other and the primary side connected in parallel with a first line and a second line, configured to output from the secondary side a voltage supplied to the primary side according to an alternating voltage; a detection circuit configured to detect a frequency of an alternating voltage; and a correction unit configured to acquire information corresponding to a voltage output from the transformer and information corresponding to a frequency detected by the detection circuit, and that corrects the information corresponding to the voltage according to the information corresponding to the frequency.