Abstract:
A nuclear reactor with forced-convection liquid coolant and solid fuel assemblies incorporates a heat removal system using a liquid metal bath for removing the nominal heat and phase-change material(s) (PCM) for removing the decay heat in an accident situation. The solid-fuel nuclear reactor with liquid metal or molten salt primary coolant simultaneously ensures heat removal by forced convection in the primary circuit, in normal and accident operating modes, during shutdown through the primary vessel of the reactor, that is, beyond the second containment barrier. In the event of an incident or accident, a compact passive decay heat removal system is capable of performing the safety function for a predetermined period, typically three days, without any intervention by an operator, due to the presence of one or more PCM(s) that store(s) the decay heat produced in the core and removed by the primary vessel.
Abstract:
A passive nuclear reactor control device. The passive nuclear reactor control device comprises a sealed chamber, which comprises a reservoir and a tube in fluid communication with the reservoir. A molten salt is within the sealed chamber, the molten salt being a eutectic mixture of a monovalent metal halide, and a fluoride or chloride of one or more lanthanides and/or a fluoride or chloride of hafnium. A gas is within the sealed chamber, and the gas does not react with the molten salt.
Abstract:
The method estimates the damaging dose of fast neutrons (dpa) which results in unacceptable degradation of paste-forming properties of steel. Upon achievement of the reactor energy yield, the direction of the coolant flow is changed from the standard direction to the reverse direction. Then an acceptable period of time is set for the annealing of reactor core elements. The temperature of the annealing mode is set and maintained by controlling the power level sufficiently to restore paste-forming properties of steel of the lower core section within the set period of time. At the end of the pre-set annealing period, the direction of the coolant flow is changed from reverse to the standard one.
Abstract:
An improved nuclear fission reactor of the liquid metal cooled type including a core configuration allowing for only two operational states, “Power” or “Rest”. The flow of the primary cooling fluid suspends the core in the “Power” state, with sufficient flow to remove the heat to an intermediate heat exchanger during normal operation. This invention utilizes the force of gravity to shut down the reactor after any loss of coolant flow, either a controlled reactor shut down or a “LOCA” event, as the core is controlled via dispersion of fuel elements. Electromagnetic pumps incorporating automatic safety electrical cut-offs are employed to shutdown the primary cooling system to disassemble the core to the “Rest” configuration due to a loss of secondary coolant or loss of ultimate heat sink. This invention is a hybrid pool-loop pressurized high-temperature or unpressurized reactor unique in its use of a minimum number of components, utilizing no moving mechanical parts, no rotating seals, optimized piping, and no control rods. Thus defining an elegantly simple intrinsically safe nuclear reactor.
Abstract:
A nuclear reactor with a liquid metal coolant includes a housing having a separating shell disposed therein. In the annular space between the housing and the separating shell are disposed at least one steam generator and at least one pump. Inside the separating shell there is an active region, above which a heat collector is disposed in communication with the vertically central portion of the steam generator in order to separate a stream of liquid metal coolant into ascending and descending flows, or the heat collector is in communication with the upper portion of the steam generator in order to create a counter-flow heat exchange regime. Below the reactor head is an upper horizontal cold collector with an unfilled level of coolant, and below the steam generator is a lower accumulating collector in communication with the upper cold collector.
Abstract:
Embodiments include electromagnetic flow regulators for regulating flow of an electrically conductive fluid, systems for regulating flow of an electrically conductive fluid, methods of regulating flow of an electrically conductive fluid, nuclear fission reactors, systems for regulating flow of an electrically conductive reactor coolant, methods of regulating flow of an electrically conductive reactor coolant in a nuclear fission reactor, and methods of fabricating an electromagnetic flow regulator for regulating flow of an electrically conductive fluid.
Abstract:
Disclosed embodiments include electromagnetic flow regulators for regulating flow of an electrically conductive fluid, systems for regulating flow of an electrically conductive fluid, methods of regulating flow of an electrically conductive fluid, nuclear fission reactors, systems for regulating flow of an electrically conductive reactor coolant, and methods of regulating flow of an electrically conductive reactor coolant in a nuclear fission reactor.
Abstract:
Disclosed embodiments include electromagnetic flow regulators for regulating flow of an electrically conductive fluid, systems for regulating flow of an electrically conductive fluid, methods of regulating flow of an electrically conductive fluid, nuclear fission reactors, systems for regulating flow of an electrically conductive reactor coolant, and methods of regulating flow of an electrically conductive reactor coolant in a nuclear fission reactor.
Abstract:
The invention relates to a novel architecture for a nuclear reactor of the integrated type.The invention comprises:realising the hot area and cold area separation device for the primary sodium flow in the form of two walls with cuts,providing two pumping groups hydraulically in series, one for the flow of sodium from the hot area to the cold area through the intermediate exchangers and the other in the cold area;providing outlet windows of the intermediate exchangers below the lower wall;providing outlet windows of the removal exchangers of the decay heat above the cold area, wherein all of clearances between the walls with cuts and the heat removal exchangers and the height between the two walls with cuts are previously determined so as to, during normal operation, take up differential movements between the walls, exchangers and vessel and to make it possible to establish during normal operation a thermal stratification of the primary sodium in the space defined between the horizontal portions of the two walls and so as to reduce, in case of an unexpected stop of a single pumping group, the mechanical stress applied to the walls and due to the portion of the primary sodium flow passing between said clearances.
Abstract:
A fast breeder reactor type nuclear power plant system including a reactor vessel provided with a core and a pipe of primary loop coolant for supplying primary loop coolant to the reactor vessel.One or more bending parts are formed on at least the pipe of primary loop coolant of the pipes, and a part of the bending part on a downstream side is provided with a flow path having a non-circular sectional configuration wherein the negative side of the bending part is formed in either a planar or flat shape.