摘要:
Technology that enables writing in a PDP to be conducted effectively, even when a time period of the writing is shortened. In a PDP driven by a method in which a write discharge is selectively generated in a plurality of cells by applying a scan pulse sequentially to a plurality of first electrodes and a data pulse selectively to a plurality of third electrodes in a write period, the technology provides for a write auxiliary discharge to be generated at least in a cell selected for writing or in a vicinity of the selected cell when the scan pulse is applied in the write period, the write auxiliary discharge being smaller in magnitude than the write discharge. The write auxiliary discharge results in the generation of priming particles in or in a vicinity of the selected cell, and these priming particles facilitate the generation of a write discharge in the selected cell. Consequently, the occurrence of defective writing is reduced and effective writing can be conducted, even when a width of the scan pulse is shortened.
摘要:
There is provided a plasma display device that has a first, a second, and a third electrodes, phosphors emitting a light depending on discharges generated by applying voltages of the first to third electrodes, and a drive circuit for applying a pulse to the third electrode in every time discharge light emission is generated by applying an alternating pulse between the first and second electrodes, and the time at which the pulse of the third electrode reaches 50% of its amplitude in the trailing edge takes place before the time of the first peak of the light emission waveform.
摘要:
A method of driving a plasma display panel that is adaptive for improving brightness and efficiency. In the method, a sustaining pulse for sustaining a discharge of a cell selected in a sustaining interval is alternately applied to each of a sustaining electrode pair. A pulse signal synchronized with the sustaining pulse is applied to a data electrode to cause a discharge for inducing a long-path discharge between the sustaining electrode pair between any one of the sustaining electrode pair and the data electrode.
摘要:
A plasma display and driving method thereof. A median electrode is formed between X and Y electrodes for receiving sustain pulse voltages, and a reset waveform and a scan pulse voltage are applied to the median electrode. A short gap discharge is performed between the X electrode and the median electrode during the initial interval of a sustain interval, and a long gap discharge is performed between the X and Y electrodes during the normal sustain interval to thus perform a stable discharge. The X and Y electrode drivers are realized through comparable circuits since the waveforms applied to the X and Y electrodes are substantially symmetric.
摘要:
In a plasma display device comprising: plural first, second, and third electrodes disposed adjacently and extending in a first direction, the third electrodes being provided between the first and second electrodes for repeating discharges; a dielectric layer covering the electrodes; a first electrode driving circuit for driving the first electrodes; a second electrode driving circuit for driving the second electrodes; and a third electrode driving circuit for driving the third electrodes, grayscale display is performed by a sub-field method, and the third electrodes are set to have a potential approximately the same as that of the first or second electrode at the discharge in the repetitive discharges. In this plasma display device, the third electrode driving circuit makes the third electrode operate as an anode at least once at least in one sub-field from minimum luminance and makes it operate as a cathode in the rest thereof.
摘要:
A priming discharge is generated simultaneously in two adjacent priming discharge cells, and an address operation is performed sequentially in the main discharge cells in the odd rows of the four rows of main discharge cells which are adjacent to the priming discharge cells. After completion of the address operation in all main discharge cells in the odd rows, the priming discharge cells are once initialized. A priming discharge is generated again in the priming discharge cells, and an address operation is performed sequentially this time in the main discharge cells in the even rows which are adjacent to the priming discharge cells. This provides a PDP and a plasma display device which can stably generate an address discharge without narrowing the driving voltage margin of an address operation and reduce the number of driving circuits required for driving the priming electrodes, and also provides a method for driving the PDP.
摘要:
A method of driving a plasma display panel having display electrode pairs each one of which pairs is formed of a scan electrode and a sustain electrode. A priming electrode is placed in every other spaces between the display electrode pairs and in parallel with the display electrode pairs. An addressing period includes an odd-line addressing period in which an address operation is conducted to primary discharge cells having odd-number scan electrodes, an even-line addressing period in which an address operation is conducted to primary discharge cells having even-number scan electrodes. During the respective addressing periods, scan pulse voltage Va is applied to odd-number scan electrodes or even-number scan electrodes while priming pulse voltage Vp is applied, prior to the application of the scan pulse voltage, to a priming electrode adjacent to the scan electrode to which scan pulse voltage Va is to be applied, in order to generate a priming discharge between the priming electrodes and the data electrodes.
摘要:
A PDP and a driving method thereof are disclosed in which luminous efficiency can be improved. The PDP includes: a pair of sustain electrodes formed at a peripheral portion of an upper substrate; and a trigger electrode formed at the center of the upper substrate.
摘要:
The plasma display apparatus, in which the light emission efficiency is improved, has been disclosed. The fourth electrodes, which extend in the same direction of the first electrodes (X electrode) and the second electrodes (Y electrodes) and are exposed into the discharge space, are provided between the first and the second electrodes where the sustaining discharge is carried out, and when the sustain action is carried out, the fixed voltage between the voltage applied to the first electrode and that applied to the second electrode is applied to the fourth electrode provided between the first and the second electrodes where the sustain action is carried out in order to make the electric field between the first and the second electrodes uniform.
摘要:
During each set-up period, wall charges of scan electrodes and sustain electrodes, between which sustain discharges were generated in the previous subfield, are adjusted, and parts toward the sustain electrodes of positive charges in the scan electrodes are replaced by negative charges and parts toward the scan electrodes of negative charges in the sustain electrodes are replaced by positive charges. During each address period, write pulses are applied to the scan electrodes to generate write discharges utilizing priming discharges between the scan electrodes and priming electrodes. During each sustain period, positive charges are accumulated in the entire surfaces of the scan electrodes and negative charges are accumulated in the entire surfaces of the sustain electrodes.