Abstract:
A method includes defining a model of a process for manufacturing a device, the process including a plurality of steps. A plurality of inline process targets are defined for at least a subset of the process steps. The model relates the inline process targets to a plurality of process output parameters. A first set of probabilistic constraints for the inline process targets is defined. A second set of probabilistic constraints for the process output parameters is defined. An objective function is defined based on the model and the plurality of process output parameters. A trajectory of the process output parameters is determined by optimizing the objective function subject to the first and second sets of probabilistic constraints for each process step to determine values for the inline process targets at each process step, the optimization being iterated after completion of each process step for the remaining process steps.
Abstract:
A machine tool management system connects an external server and a large number of NC devices controlling the external server and respective machine tools through a network. The system collects several kinds of signal data from the NC device of each machine tool to the external server. In the system, the external server collects an estimated thermal distortion from the NC device and compares the estimated thermal distortion with pre-stored data to determine whether the tool is machining favorably.
Abstract:
The present invention is generally directed to various methods and systems for calibrating degradable components using process state data. In one illustrative embodiment, the method includes providing a tool comprised of at least one process chamber, providing at least one process state sensor that is adapted to obtain process state data regarding at least one characteristic of a process environment established in the chamber in performance of a process operation, operatively coupling at least one of a new or repaired degradable component to the tool, and calibrating the new or repaired degradable component based upon the process state data. In further embodiments, the method comprises processing a plurality of additional workpieces in the tool after the new or repaired degradable components have been calibrated using process state data in accordance with one aspect of the present invention.
Abstract:
A material handling system for lifting a load and a method sensing an unstable state of the material handling system. The system includes a motor, a brake and a drive. The method includes storing a model of the motor in the drive and generating a signal in the drive. The signal has a voltage and a frequency. The method further includes providing the signal to the motor, sensing a current value of the signal, determining a modeled value based in part on the sensed current value, comparing an actual value to the modeled value to determine whether the load is stable, and generating an output that sets the brake when the load is potentially unstable.
Abstract:
A method includes defining a model of a process for manufacturing a device, the process including a plurality of steps. A plurality of inline process targets are defined for at least a subset of the process steps. The model relates the inline process targets to a plurality of process output parameters. A first set of probabilistic constraints for the inline process targets is defined. A second set of probabilistic constraints for the process output parameters is defined. An objective function is defined based on the model and the plurality of process output parameters. A trajectory of the process output parameters is determined by optimizing the objective function subject to the first and second sets of probabilistic constraints for each process step to determine values for the inline process targets at each process step, the optimization being iterated after completion of each process step for the remaining process steps.
Abstract:
A material handling system for lifting a load and a method sensing an unstable state of the material handling system. The system includes a motor, a brake and a drive. The method includes storing a model of the motor in the drive and generating a signal in the drive. The signal has a voltage and a frequency. The method further includes providing the signal to the motor, sensing a current value of the signal, determining a modeled value based in part on the sensed current value, comparing an actual value to the modeled value to determine whether the load is stable, and generating an output that sets the brake when the load is potentially unstable.
Abstract:
The present invention configures a control strategy and a process model to calculate a setting of a machine. The present invention adjusts the process model in accordance with an analysis of the setting to control the machine.
Abstract:
A numerical control system includes a computer aided design (CAD) data storage means for storing CAD data, an input/output (I/O) assignment data storage means for storing I/O assignment data, and a relevant information storage means for recording relevant information between the I/O assignment data and mounting information included in CAD data of each of the I/O units, and displays a defect occurrence region on a shape image of a control panel.
Abstract:
A method for stipulating a starting time for an update for a control apparatus that controls at least one peripheral component in a process automation installation by producing control outputs is disclosed. The update requires at least one predetermined down time. The invention is based on a suitable starting time for performing an update in order to perform an update in the course of operation of a process automation installation without risk. The method involves detecting a current operating state for the at least one peripheral component, taking the detected operating state as a basis for using a controlled system model of the process to simulate what state trajectory the at least one peripheral component negotiates within the down time for a predetermined static control output, and checking whether the state trajectory lies exclusively within a range of admissible operating states, and, if appropriate, starting the update.
Abstract:
The present invention configures a control strategy and a process model to calculate a setting of a machine. The present invention adjusts the process model in accordance with an analysis of the setting to control the machine.