Abstract:
A method of machine control can include providing at least a system master signal, selectively synchronizing at least sub-system master signal to the system master signal based on the value of the system master signal, and carrying out at least one operation based on the value of the other master signal. For example, a machine controller may provide a system virtual master signal and synchronize one or more module virtual master signals to the system virtual master based on the system virtual master count value. One or more components of the module may operate based on the count value of the module virtual master signal. The use of an asynchronous control method may advantageously increase the flexibility of the machine. Because the operation of the components of the machine may depend on respective virtual master signals, a machine using asynchronous control methods may advantageously continue operating one component or module in the event of a fault involving other components. Additionally, component operation can be redefined while other components of the machine continue to run.
Abstract:
A method of machine control can include providing at least a system master signal, selectively synchronizing at least sub-system master signal to the system master signal based on the value of the system master signal, and carrying out at least one operation based on the value of the other master signal. For example, a machine controller may provide a system virtual master signal and synchronize one or more module virtual master signals to the system virtual master based on the system virtual master count value. One or more components of the module may operate based on the count value of the module virtual master signal. The use of an asynchronous control method may advantageously increase the flexibility of the machine. Because the operation of the components of the machine may depend on respective virtual master signals, a machine using asynchronous control methods may advantageously continue operating one component or module in the event of a fault involving other components. Additionally, component operation can be redefined while other components of the machine continue to run.
Abstract:
A system and method for controlling a model train system and for defining a finite state machine for implementing control of the system. A computer (32) that is running a graphic user operating system is coupled through its serial port to a master control unit (MCU) (48). The MCU is coupled to slave control units (SCUs) (50, 52) and to a hand control unit (HCU) (152) through a token ring network (69) over which the computer transmits commands to energize selected track sections and to control the speed of locomotives (88, 90) running thereon. The MCU and SCUs are coupled to the sections of tracks and to electromagnetic switches (42, 44, 46) that determine the route of the trains over the sections of track. Furthermore, detector circuits (126) monitor a detector pulse to sense the presence of a locomotive or train on a particular section of track, producing an indicative output signal that is provided to the computer. The user graphically defines events, conditions, and control actions that are to be carried out on a visually displayed schedule manager grid. In addition, the user can graphically define a control panel that includes graphic controls, which can be manipulated by the user to establish the speed of a locomotive and to control the status of the electromagnetic switches. The control system can also be applied to control other systems that include electrically energized components.
Abstract:
In a microprocessor-controlled apparatus a plurality of event vector tables and a plurality of event action blocks are defined and stored in memory to provide a determined set of actions to be performed in correspondence to activation by respective determined events. A profile interpreter processes action function sequences from these tables and commands the corresponding actions, sets a corresponding event-occurred flag and thereafter commands other actions and manipulates the flag by operation of respective profile action functions associated with the respective operations of the apparatus. The levels of operation may be arranged hierarchically so that additional modules may be added at a lower level without altering the control functions provided at the higher level. All of the primitive functions that can be realistically supported by the device controller are preferably included in the base software. Aggregate functions may be designed to support complex I/O functions such as scanning. In accordance with the invention these functions are activated by device profiles that are downloaded by the system software to each device controller during application initialization. These profiles can also be hard-coded into a source-format include-file to accommodate a standalone operation without download capability. Mailpiece tracking is included in the method.
Abstract:
A method of machine control can include providing at least a system master signal, selectively synchronizing at least sub-system master signal to the system master signal based on the value of the system master signal, and carrying out at least one operation based on the value of the other master signal. For example, a machine controller may provide a system virtual master signal and synchronize one or more module virtual master signals to the system virtual master based on the system virtual master count value. One or more components of the module may operate based on the count value of the module virtual master signal. The use of an asynchronous control method may advantageously increase the flexibility of the machine. Because the operation of the components of the machine may depend on respective virtual master signals, a machine using asynchronous control methods may advantageously continue operating one component or module in the event of a fault involving other components. Additionally, component operation can be redefined while other components of the machine continue to run.
Abstract:
A recording of a macro is initiated. A first of a plurality of actions performable by the moveable barrier operator is selected and the first action is associated with the macro. At least a second of the plurality of actions available is selected at the moveable barrier operator and the second action is associated with the macro. A functional sequence of the first and second actions is recorded. The functional sequence specifies the order of performance of the first and second action. The recording of the macro is terminated. Subsequent to the terminating, actions recorded by the macro are performed at the moveable barrier operator in accordance with the functional sequence.
Abstract:
Conventional Boolean Logic Control is augmented to provide enhanced diagnostics, monitoring, and fail safe operation for dynamic systems having distributed discrete-valued sensors and actuators. A decentralized model of a controlled system defines behavior and timing models for both sensors and actuators, termed Control Elements (CEs). Each CE has a first model for transition from state 0 to 1, and a second model for transition from state 1 to 0. Each behavioral model is defined by an Event Signature comprising a sequence of state changes in neighboring CEs. A continuous evaluation of event signatures is performed to compute a probability that a given CE will change state. An Expectation Function is used to check and enforce the correct behavior of a CE. A statistical temporal model predicts delays in the states of a CE as a function of its previous and current delays. The distributed behavior and on-line timing models are used to detect and diagnose incorrect behavior and failures of decentralized sensors and actuators.
Abstract:
A method of machine control can include providing at least a system master signal, selectively synchronizing at least sub-system master signal to the system master signal based on the value of the system master signal, and carrying out at least one operation based on the value of the other master signal. For example, a machine controller may provide a system virtual master signal and synchronize one or more module virtual master signals to the system virtual master based on the system virtual master count value. One or more components of the module may operate based on the count value of the module virtual master signal. The use of an asynchronous control method may advantageously increase the flexibility of the machine. Because the operation of the components of the machine may depend on respective virtual master signals, a machine using asynchronous control methods may advantageously continue operating one component or module in the event of a fault involving other components. Additionally, component operation can be redefined while other components of the machine continue to run.
Abstract:
The subject invention relates to a system and methodology facilitating automated manufacturing processes in a regulated industrial controller environment, wherein a centralized signature component generates signature events to remote locations and validates signatures required to satisfy such events. A system for distributed signature processing is provided. The system includes a signature component to determine when to generate one or more electronic signature events and to validate electronic signatures that have been received from various local or remote locations. An application layer distributes interface components to the locations in order to facilitate generation of the electronic signature events and validation of the electronic signatures.
Abstract:
A recording of a macro is initiated. A first of a plurality of actions performable by the moveable barrier operator is selected and the first action is associated with the macro. At least a second of the plurality of actions available is selected at the moveable barrier operator and the second action is associated with the macro. A functional sequence of the first and second actions is recorded. The functional sequence specifies the order of performance of the first and second action. The recording of the macro is terminated. Subsequent to the terminating, actions recorded by the macro are performed at the moveable barrier operator in accordance with the functional sequence.