Abstract:
Ferrules, alignment frames and connectors having at least one flexing element are provided. A ferrule or an alignment frame may include a body and first and second flexible arms, and a connector may include the ferrule or the alignment frame. A ferrule may have a first flexible arm that has a first fixed end attached to a first side of the body of the ferrule and an opposite first free end, and may have a second flexible arm having a second fixed end attached to a second side of the body, opposite the first side, and an opposite second free end. When the ferrule is mated with a mating ferrule, the first and second flexible arms are flexed away from the respective first and second sides of the body, and the first and second free ends contact the mating ferrule.
Abstract:
Ferrules, alignment frames and connectors having at least one flexing element are provided. A ferrule or an alignment frame may include a body and first and second flexible arms, and a connector may include the ferrule or the alignment frame. A ferrule may have a first flexible arm that has a first fixed end attached to a first side of the body of the ferrule and an opposite first free end, and may have a second flexible arm having a second fixed end attached to a second side of the body, opposite the first side, and an opposite second free end. When the ferrule is mated with a mating ferrule, the first and second flexible arms are flexed away from the respective first and second sides of the body, and the first and second free ends contact the mating ferrule.
Abstract:
An optical connector assembly includes a first optical connector and a second optical connector. The first optical connector includes a first housing, a plurality of first optical fibers, a first cable retainer and a first light coupling unit attached to the plurality of first optical fibers and separated by a first optical fiber length L1. The second optical connector includes a second housing, a plurality of second optical fibers, a second cable retainer and a second light coupling unit attached to the plurality of second optical fibers and separated by a second optical fiber length L2, different from L1. The ratio of L1/L2 is such that, when the first optical connector is mated with the second optical connector, the first light coupling unit and the second light coupling unit rotate relative to the first housing and the second housing, respectively, and mate.
Abstract:
An optical cable subassembly includes one or more optical waveguides, at least light coupling unit comprising a first attachment area permanently attached to the optical waveguides, and at least one cable retainer comprising a second attachment area permanently attached to the optical waveguides and adapted to be installed in a housing. A length of the optical waveguides between the first attachment area and the second attachment area allows a bend in the optical waveguides that provides a predetermined mating spring force at a predetermined angle of the light coupling unit when installed in the housing.
Abstract:
A connector is disclosed that includes a housing and first and second attachment areas located in the housing and spaced apart from each other along the mating direction of the connector. The second, but not the first, attachment area is designed to move relative to the housing. The connector further includes an optical waveguide that is permanently attached to, and under a first bending force between, the first and second attachment areas. The connector also includes a light coupling unit located in the housing for receiving light from the optical waveguide and transmitting the received light to a mating connector along a direction different than the mating direction of the connector. The mating of the connector to the mating connector causes the optical waveguide to be under a greater second bending force between the first and second attachment areas.
Abstract:
A unitary optical ferrule is molded to include one or more elements for receiving and securing one or more optical waveguides one or more elements for affecting one or more characteristics of light from the optical waveguide while propagating the light within the ferrule. The optical ferrule also includes one or more first alignment features and one or more second alignment features that, when the ferrule is mated with a mating ferrule, each controls alignment of the ferrule with the mating ferrule along three mechanical degrees of freedom. The surface of the optical ferrule can be divided along the thickness axis into a first section and an opposing second section, wherein the first section of the surface includes the receiving and securing elements, the light affecting elements, and the first alignment features and the second section of the surface includes the second alignment features.
Abstract:
An optical cable subassembly includes one or more optical waveguides, at least light coupling unit comprising a first attachment area permanently attached to the optical waveguides, and at least one cable retainer comprising a second attachment area permanently attached to the optical waveguides and adapted to be installed in a housing. A length of the optical waveguides between the first attachment area and the second attachment area allows a bend in the optical waveguides that provides a predetermined mating spring force at a predetermined angle of the light coupling unit when installed in the housing.
Abstract:
A female optical connector includes a connector body, a hollow pusher, an optical fiber, lenses, and two elastic shielding plates. The connector body includes a coupling surface. The coupling surface defines a receiving hole with an opening. The connector body further includes an end surface, a first surface, and a second surface in the receiving hole. The end surface faces the opening and is interconnected between the first surface and the second surface. The hollow pusher extends from the end surface and is received in the receiving hole. The hollow pusher is spaced apart from the first and second surfaces. The lens is received in the receiving hole and optically coupled to the optical fiber. The elastic shielding plates have fixed ends fixed to the first surface and the second surface at opposite sides of the receiving hole, and opposite free ends overlappable to cover the opening.
Abstract:
Optical connectors are provided for connecting sets of optical waveguides (104), such as optical fiber ribbons to each other, to printed circuit boards, or to backplanes. The provided connectors (100) include a housing (110) that has an attachment area (102) for receiving and permanently attaching a plurality of optical waveguides. Additionally, the provided connectors include a light coupling unit (120) disposed in and configured to move with the housing. The provided connectors also include a second attachment area (108) for receiving and permanently attaching to the plurality of optical waveguides that causes each optical waveguide to be bent between the two attachment areas. The provided connectors utilize expanded beam optics with non-contact optical mating resulting in relaxed mechanical precision requirements. The provided connectors can have low optical loss, are easily scalable to high channel count (optical fibers per connector) and can be compatible with low insertion force blind mating.
Abstract:
A male optical connector includes a connector body, a hollow pusher, a number of lenses, and two elastic shielding plates. The connector body defines a receiving hole with an opening and includes a connection surface in the receiving hole. The connection surface faces the opening. The pusher extends from the connector body and surrounds the receiving hole. The lenses are received in the receiving hole. The two elastic shielding plates have two fixed ends fixed to opposite sides of the pusher, and opposite free ends overlappable to cover the opening.