Abstract:
A measuring system includes a detector having an optical waveguide including a primary dopant capable of transmuting, by neutron capture, into a stable secondary dopant that is less neutron-absorbent than the primary dopant, a moderation layer suitable for slowing down fast neutrons, and an analysis device connected to the detector. The analysis device is configured to inject, into the waveguide, an interrogation wave having a wavelength corresponding to an absorption peak of the secondary dopant, detect a response wave emitted by the waveguide, calculate, from the detected response wave, a piece of information relating to a concentration of secondary dopant in the waveguide, and, based on the information relating to the calculated concentration of secondary dopant, determine a fluence of fast neutrons during a predetermined secondary period.
Abstract:
Disclosed are a radioisotope activity surveillance system and methods. The system includes a fuel rod assembly having a plurality of nuclear fuel rods and a target assembly having a top nozzle including an orifice plate and at least one target material rod fixedly coupled to the orifice plate. The least one target material rod is slidably disposed within the fuel rod assembly. A sensing assembly defines an opening sized and configured to receive the target assembly therethrough. The sensing assembly includes a self-powered detector assembly to detect radioisotope activity of the target rod material. Also disclosed is a method for measuring a self-powered detector signal to calculate radioisotope activity of a target assembly and a method for analyzing total activity of a desired radioisotope.
Abstract:
A self-powered in-core detector arrangement for measuring flux in a nuclear reactor core includes a first in-core detector and a second in-core detector. The first in-core detector includes a first flux detecting material, a first lead wire extending longitudinally from a first axial end of the first flux detecting material, a first insulating material surrounding outer diameters of the first flux detecting material and the first lead wire and a first sheath surrounding the first insulating material. The first sheath includes a first section surrounding the first flux detecting material and a second section surrounding the first lead wire. The first section of the first sheath has a greater outer diameter than the second section of the first sheath. The second in-core detector includes a second flux detecting material, a second lead wire extending longitudinally from a first axial end of the second flux detecting material, a second insulating material surrounding outer diameters of the second flux detecting material and the second lead wire, and a second sheath surrounding the second insulating material. The second sheath includes a first section surrounding the second flux detecting material and a second section surrounding the second lead wire. The first section of the second sheath has a greater outer diameter than the second section of the second sheath. The first section of the first sheath is axially offset from the first section of the second sheath and radially aligned with the second section of second sheath.
Abstract:
A measuring device for measuring the activity of a specimen of a radioactive isotope is disclosed. The specimen of the radioactive isotope is contained within a capsule. The measuring device comprises an inner enclosure, a gamma-radiation sensitive self-power detector (SPD) positioned around the inner enclosure, and an outer enclosure positioned around the SPD and the inner enclosure. The inner enclosure comprises an internal cavity configured to receive the capsule containing the specimen. The inner enclosure defines a longitudinal axis. The outer enclosure secures the SPD to the inner enclosure such that the SPD does not move during operation and storage of the measuring device.
Abstract:
A self-powered neutron detector in which two electrically isolated emitter electrodes are provided. The emitters are formed of different materials having differing responses to thermal and epithermal neutron flux. The separate signals generated between the separate emitters and a common collector electrode are used to determine the respective thermal and epithermal neutron fluxes for a more accurate flux mapping of the reactor core.
Abstract:
Electrical conducting cable which is insensitive to nuclear radiation comprising at least one conductive core, at least one layer of an insulating substance surrounding said conductive core and at least one conductive sheath surrounding said insulating layer, wherein the diameter .phi..sub.D of the sheath, the diameter .phi..sub.B of the conductive core, the diameter of .phi..sub.C of the insulating layer are linked by the equation: ##EQU1## F.sub.1 representing the .beta..sup.- radiation fraction from the core reaching the sheath, F.sub.2 representing the .beta..sup.- radiation fraction from the sheath which reaches the core, the insulating substance being constituted by a mixture of at least two metal oxides.
Abstract:
A self-powered neutron and gamma-ray flux detector is provided wherein the emitter comprises an emitter core of at least one material selected from nickel, iron, titanium and alloys based on these metals, and an emitter outer layer around the core which has a thickness in the range of the order of 0.03 mm to of the order of 0.062 mm and which is of at least one material selected from platinum, tantalum, osmium, molybdenum and cerium. With this construction, by increasing the emitter diameter beyond the optimum for a solid platinum emitter, the ratio of neutron to gamma-ray sensitivity, and hence the prompt response fraction, is increased while an acceptably small burnup rate is maintained. Larger diameter emitters of this construction have response characteristics that closely match those required for a fuel power detector in, for example, heavy-water-moderated, natural-uranium power reactors. The emitter core is preferably of Inconel (Trademark) and the emitter jacket is preferably of platinum.
Abstract:
A parallel-plate variable-gap diode is described which is used to detect Xnd gamma radiation pulses. The collector of the diode is comprised of an interior circular portion and a concentric external annular portion, the collecting surfaces of which are coplanar and noncontiguous. A shielded low-inductance resistor-ring shunts the bulk of the sampled current back through the annular portion of the collector to the emitter thereby reducing self-bias effects. The central location and relatively small size of the current sampler minimize the perturbing influence of the walls at the periphery of the cavity. A one-dimensional electron transport analysis can therefore provide the link between the incident radiation and the observed current response of the diode. The cylindrical walls of the cavity are interchangeable spacers which permit the variation of separation between emitter and collector.
Abstract:
In a neutron detector connected by a cable with a current amplifier for the signal based on (n,e)-processes, any change in the insulation resistance of the cable is monitored by means of an a-c voltage which is superimposed on the offset voltage of the amplifier. The resistance-dependent a-c variable at the output of the amplifier, is used to make a limit indicator respond via a connected filter. The invention is of importance particularly for monitoring the internal core instrumentation of pressurized-water reactors.
Abstract:
A self-powered neutron detector has a neutron-sensitive emitter, a collector enclosing this emitter and insulation between these two components. When irradiated by neutrons, the emitter generates Compton electrons so that a current is produced between the emitter and electrode and which may be used with a current-measuring device to provide a readout. The emitter is enclosed and electrically connected with a metal which is substantially neutron-insensitive so that the detector provides a substantially true and prompt signal accurately reflecting the neutron flux density received by the detector.