Abstract:
Disclosed is a method of automatically adjusting the leveling of a pixel light headlamp for a vehicle, which may automatically adjust the leveling of a headlamp that is configured for implementing a pixel light using a DMD optical system.
Abstract:
A vehicle lamp system includes a camera which generates image information in a front region, a controller which generates a light distribution command for instructing a light distribution pattern based on the image information, a headlight which irradiates the front region such that the instructed light distribution pattern is obtained, and a position calibrator which detects a positional deviation between the camera and the headlight. The position calibrator detects a reference object based on the image information and measures a luminance of the reference object, and when there is a certain difference between a luminance of the reference object obtained from one light distribution pattern and a luminance of the reference object obtained from another light distribution pattern in which a light quantity of only a part is different from the one light distribution pattern, detects the positional deviation using a position of the part.
Abstract:
A method for beam range regulation of at least one headlamp of a vehicle includes: reading in a camera image of at least one camera of the vehicle, the camera image including at least a part of a representation of a projection surface of a light cone of the headlamp in front of the vehicle; determining at least one coordinate of at least one predefined brightness transition and/or of a predefined brightness inhomogeneity in the camera image; comparing the coordinate with a target coordinate in order to obtain a difference of the coordinate from the target coordinate, the target coordinate representing a coordinate at which the predefined brightness transition or the predefined brightness inhomogeneity is expected; and controlling the headlamp with a beam range modification signal that is a function of the difference, in order to modify the beam range.
Abstract:
A process and apparatus are provided for the control of the light distribution of a headlight arrangement of a vehicle with at least one first light sensor which senses light emissions acting on a driver from the field of vision in the direction of travel for various areas of the field of vision. A comparator device compares the intensity of the light emissions for each area with a threshold value. A control device controls the light distribution of the headlight arrangement as a function of a signal of the comparator device. In order to provide an improved process and an improved apparatus for the control of the light distribution of a headlight arrangement of a vehicle, it is proposed for the light distribution in the sense of an increase of the illumination of the edge of the road of the driver's own side of the road to provide a turn-off delay combined with a deadtime connected before it. The threshold value for the comparator device is a function of the ambient brightness which is determined over a certain time.
Abstract:
An arrangement for visualizing the illumination by at least one vehicle headlight of a zone situated in front of the vehicle as considered in the forward driving direction includes a camera mounted on the vehicle and operative for taking a succession of scenes of the environment of the vehicle including the aforementioned zone as the vehicle travels on a roadway in the forward driving direction. A visualization device including a monitor visually renders the scenes obtained from the camera, and a simulated rendition of the region illuminated by the headlight is presented in the succession of scenes appearing on the monitor. The light beam issued by the headlight is presented in a simplification as a light cone. The roadway in front of the vehicle, its edges of the roadway, respective marking lines in the scenes representative of distances in at least one of the direction of travel of the vehicle and transversely thereto, a marker for indicating the instantaneous direction of travel of the vehicle and/or the area of intersection of the simulated light beam with roadway in front of the vehicle, its edges and/or its center are presented on the monitor in an especially emphasized manner.
Abstract:
A vehicle may have lights such as headlights. The lights may be moved using a positioner. Control circuitry in the vehicle may use sensor circuitry to monitor the environment surrounding the vehicle. The sensor circuitry may include one or more sensors such as a lidar sensor, radar sensor, image sensor, and/or other sensors to measure the shape of a surface in front of the vehicle and the location of the surface relative to the vehicle. These sensors and/or other sensors in the sensor circuitry also measure headlight illumination on the surface. Based on the known shape of the surface in front of the vehicle and the distance of the surface from the vehicle, the control circuitry can predict where a headlight should be aimed on the surface. By comparing predictions of headlight illumination on the surface to measurements of headlight illumination on the surface, the vehicle can determine how to move the headlight with the positioner to align the headlight.
Abstract:
A switch device includes a cylindrical movable lever-portion that is operable in multiple directions, a unit case that supports the movable lever-portion, and a flexible printed circuit board routed from an inside of the movable lever-portion to an inside of the unit case. A routed portion of the flexible printed circuit board to be routed inside the unit case includes a stress absorber configured to absorb a stress applied to the flexible printed circuit board. The stress absorber includes a plurality of curved portions curved in opposite directions to each other.
Abstract:
A method for checking the plausibility of detected features of a light distribution of a headlamp of a motor vehicle includes irradiating, by the headlamp, a scene in surroundings of the motor vehicle; capturing, by a camera of the motor vehicle, the irradiated scene in an image; dynamically seeking and identifying at least one initial optical feature in the image, adaptively producing and analyzing local surroundings of the at least one initial optical feature; dynamically extracting at least one further optical feature from the local surroundings; and carrying out, using a learned algorithm and on the basis of the at least one initial optical feature and the at least one further optical feature, an adaptive check as to whether the at least one initial optical feature and the at least one further optical feature are plausibly arranged in the local surroundings.
Abstract:
The invention relates to a method and an apparatus for checking a lighting driving assistance system of vehicles. In this case, a vehicle is positioned in front of a body and a light of the vehicle is aimed at this body. Brightness distributions are obtained by adjusting the light in the horizontal and vertical directions in a plurality of angular positions and are recorded by an image capture unit. The recorded brightness distributions are used to calculate the distance and angular offset as well as the position of the body and actual values of the angular positions. These actual values are compared with preset desired values, and recommended settings for minimizing a difference between desired and actual values are output.
Abstract:
An image processing system including an imaging unit mounted on a subject vehicle, and an image analysis unit that acquires images photographed by the imaging unit. The image analysis unit acquires plural images with different exposures that the imaging unit photographed, detects light spots emitted from the other vehicles from the plural images with different exposures, and detects positions of the other vehicles. The plural images are an image photographed with a first exposure, and an image photographed with a second exposure greater than the first exposure. The image analysis unit extracts a first area containing a first color component from the image photographed with the first exposure to determine the first area to be a first three-dimensional object, and extracts a second area containing a second color component from the image photographed with the second exposure to determine the second area to be a second three-dimensional object.