Abstract:
Embodiments include active protection systems and methods for an aerial platform. An onboard system includes radar modules, detects aerial vehicles within a threat range of the aerial platform, and determines if any of the aerial vehicles are an aerial threat. The onboard system also determines an intercept vector to the aerial threat, communicates the intercept vector to an eject vehicle, and causes the eject vehicle to be ejected from the aerial platform to intercept the aerial threat. The eject vehicle includes alignment thrusters to rotate a longitudinal axis of the eject vehicle to substantially align with the intercept vector, a rocket motor to accelerate the eject vehicle along an intercept vector, divert thrusters to divert the eject vehicle in a direction substantially perpendicular to the intercept vector, and attitude control thrusters to make adjustments to the attitude of the eject vehicle.
Abstract:
A method for determining a position of a device in a reference coordinate system. The method including: receiving, at the device, less than all of GPS signals necessary to determine the position of the device in the reference coordinate system; transmitting a signal from aν illuminating source defined in the reference coordinate system; receiving the signal at a cavity waveguide disposed on the device; and determining the position of the device in the reference coordinate system based on the GPS signals and the signal received in the cavity waveguide. The signal received in the cavity waveguide can also be used to confirm a position determined by the GPS signals.
Abstract:
The present invention relates to a system and method for determining vehicle attitude and position from image data detected by sensors in a vehicle. The invention uses calculated differences between the locations of selected features in an image plane and the location of corresponding features in a terrain map to determine the attitude of the vehicle carrying the sensors with respect to a ground frame of reference.
Abstract:
A method is provided for characterizing luminous celestial objects (e.g., stars) in celestial navigation of a missile system. The method includes segmenting, assigning, measuring, computing, ratioing, producing, scaling, and determining operations. Segmenting includes subdividing wavelength range into discrete contiguous bins. Assigning arranges each bin into a plurality of color bands. Establishing sets a transmissivity to each bin of each color band. Computing calculates broad-based fluxes for a reference value as a reference flux. Ratioing computes a ratio between the target flux to the library flux as a color scale for each band. Squaring determines the library flux for each band as a library flux squared. Producing sums a spectral scale over the color bands, a second multiplication of the color scale and the library flux squared as a first sum product, and sums over all the bands the library flux squared as a second sum product and dividing the sum products. Scaling factors each measured intensity of the measured intensities as a scaled intensity by multiplying each target intensity by the spectral scale for each bin. Determining sums a scaled broad-band flux for each band over the bins, a third multiplication of the transmissivity and the scaled intensity.
Abstract:
Methods are provided where: a signal is transmitted from an illuminating source and received cavity waveguides disposed on an object; a position and/or orientation of the object is determined based on the signal received in the waveguides; and data representing the determined position and/or orientation is transmitted to a remote location or generated for use in the object. The illuminating source can also be moved to indicate a change in a predetermined trajectory or target position where a new position and/or orientation of the object is determined based on the signal received in the waveguides and the object is controlled to change the predetermined trajectory or target position to the indicated new predetermined trajectory or new target position. A change can also be detected in the predetermined trajectory or target position and the object controlled to correct the change.
Abstract:
A jet bomb guidance system in which bi-directional nozzles are fired in a manner to produce force state changes resulting in improved level of control, greater force compatibility and greater efficiency in propellant fuel usage. The system includes four bi-directional nozzles spaced at 90 degree internals in which at least four single nozzles are open at any given instant to maintain a substantially constant gas pressure. The system may be positioned at the nose portion, tail portion, or center of gravity of the bomb.
Abstract:
A ballistic missile guidance apparatus for compensating the trajectory of aallistic missile just prior to thrust termination by comparing the nominal trajectory with the actual flight parameters encountered during the powered stage of the flight and introducing compensating corrections to provide for an accurate ballistic flight. The comparison is made by storing the nominal kinematic parameters and comparing thereto the actual flight parameters obtained from the inertial guidance system.
Abstract:
A missile guidance system in which a projectile or missile is fired toward predetermined target with the missile being tracked on its flight toward the target by radar, processing the radar information in a computer apparatus and finally computing a new trajectory from the missile to the target and transmitting correction signals to a correction device on the missile including thrusters on the missile to cause the trajectory of the missile to be changed to the newly computed trajectory for the missile. This system corrects the trajectory of the missile while in flight by recomputing a trajectory from the missile to the predetermined target and making appropriate corrections each time. Thisenables the missile to only contain radar reflecting means, and correction detection and control means on the missile rather than having gyro and other type devices on board the missile which take up a considerable amount of space and weight.
Abstract:
A system for controlling a missile motion in the homing mode comprises means for designating by an error signal a direction in which a missile is guided in the homing mode, and means for compounding with the error signal a predetermined biasing signal imparting acceleration in one or two dimensions normal to a direction of the missile derivation. The biasing signal causes shells from anti-aircraft guns and anti-missile missiles to increase the miss-distance to the missile, within the allowable maneuverability of the missile, whereby the missile evades defensive action and finally zeroes in on a target.
Abstract:
An electronic, digital, time fuze, has a time base which is introduced over a radar command link at a rate which is inversely proportional to the desired projectile flight time. A target following ranging device, such as a ranging laser, provides target range information to a pulsed radar transmitter. The range signal from the ranging device controls a variable pulse rate control unit which in turn adjusts the transmitter pulse rate to a value inversely proportional to the target range. The transmitter is fixed to the weapon system and radiates in the direction of the projectile flight path. Each projectile includes a fuze actuating circuit consisting of an antenna, an r.f. detector, a fixed-set counter and a firing circuit. At launch, the fuze actuating circuit within each projectile becomes actuated a short distance after departure from the gun muzzle. As the projectile travels towards its target it receives a series of r.f. pulses at a rate which will just fill the counter when the projectile is at the proper range. The counter within the fuze counts the pulses received during its flight to target. When the fixed-set number has been accumulated, the firing circuit detonates the payload.