Abstract:
A power circuit includes a boost circuit having a boost switching element, a coil provided between a battery and the boost switching element and a rectifier element provided between the coil and a load, a first switch connected to the boost circuit in parallel, a current detection circuit detecting current flowing through the first switch and a control circuit turning on the first switch during a normal state other than a restart of an engine after an idling stop and turning off the first switch and controlling an operation of the boost switching element at a restart of the engine after an idling stop so that voltage of the battery is boosted and supplied to the load. The control circuit determines based on the current detected by the current detection circuit during the normal state whether or not the first switch has an open fault.
Abstract:
An engine system may include a specified number of individual injectors, and an engine control unit (ECU) having a specified number of pins coupling to the individual injectors. The ECU may include a controller capable of dynamically switching between different multiplexing configurations, with each multiplexing configuration coupling individual injectors across corresponding pairs of pins. Each pin may internally couple to one half of an H-bridge structure, with an injector coupled across two pins thereby completing a full H-bridge structure, providing the flexibility to achieve combined solenoid and Piezo injection control. Specifically, each pin may be internally coupled to a low-side switch and a set of high-side switches, and the switches may be operated according to the dynamically selected multiplexing configuration and the type of injection control to perform any one or more of unipolar solenoid, unipolar Piezo, bipolar solenoid, and bipolar Piezo injection control, depending on the injector type used.
Abstract:
A fuel injection control system for an internal combustion engine includes a plurality of first energy storage elements each for supplying a high voltage to a fuel injection solenoid valve, boosting circuits each for boosting a battery voltage and electrically charging one of the first energy storage elements, a second energy storage element for accumulating electrical energy of the battery voltage, and a switching circuit for transferring the electrical energy between the plurality of first energy storage elements via the second energy storage element. This configuration enables the fuel injection control system for an internal combustion engine to implement stabilized supply of a fuel by obtaining within a short time the high voltage needed to operate the fuel injector both accurately and reliably, and to contribute to cost reduction by, for example, alleviating capability requirements and part performance requirements of the individual boosting circuits.
Abstract:
In a voltage boost circuit for driving a fuel injector of an internal combustion engine, a high voltage developed in the voltage boost coil will be discharged into the battery power supply through the boost coil by electrically energizing a discharge switching element provided in parallel to the charging diode. If the overboost compensation overlaps a boost execution period, the end of the boost execution period will await starting of the overboost compensation.
Abstract:
There is described a voltage booster circuit for powering a piezoelectric actuator of an injector, and having a first and a second input terminal supplied with an input voltage; a first and a second output terminal supplying an output voltage greater than the input voltage, the second input terminal and second output terminal being connected to each other over a common line; a first and a second inductor coupled magnetically and connected in series between the first input terminal and the first output terminal; a capacitor connected between the first output terminal and the second output terminal; and a controlled switch connected between the intermediate node between the first and second inductor, and the second input terminal and second output terminal, and which switches between a closed operating state, to permit charging of the first inductor by the input voltage, and an open operating state, to permit transfer of the charge stored in the first inductor to the capacitor via the second inductor.
Abstract:
A converter mounting comprises a memory coil inductance (8), a memory primary capacitor (3) mounted upstream of said coil inductance, and a memory secondary capacitor (4), in particular, a piezoelectric actuator, mounted downstream of said coil inductance. Through control of a primary circuit element (12) and of a secondary circuit element (14), the energy of the memory primary capacitor (3) can be transferred to the memory secondary capacitor (4) and recovered.
Abstract:
The system makes it possible to control at least one piezoelectric actuator having a capacitive impedance and includes a source of voltage, a control circuit branch in parallel with the source, in which the actuator is connected in series to two electronic switches each having a respective parallel diode; an energy accumulating inductor with one terminal connected between the said switches and the other connected to the voltage source; and an electronic unit operable to control the said controlled switches according to predetermined modes of operation.
Abstract:
Pulsed-energy controllers and methods of operation thereof for driving inductive loads such as the actuator coil or coils of electromechanical actuators. The controllers utilize an inductor through which an initial current is established through a first circuit. The inductor is then switched across the actuator coil or other inductive load in a second circuit and the first circuit is opened. The back EMF of the inductor, limited by a high voltage protective device, causes a rapid rise in the current through the actuator coil, the rise being much faster than could be achieved by merely coupling the supply voltage, as used to establish the current in the inductor, directly to the actuator coil. By proper selection of the controller circuit and its parameters, the initial rapid current rise may continue to a current higher than a steady state current, after which the current will decrease to or toward the lower steady state current until the current pulse is terminated. Various embodiments are disclosed.
Abstract:
A drive circuit for energizing an engine fuel injector coil from a power source which has energy storage means responsive to a first control signal for selectively storing energy from the power source, and means responsive to a second control signal for selectively discharging energy stored in the energy storage means into said injector coil. The stored energy is discharged into the injector coil in addition to energy from the power source, to more rapidly open the fuel injector. In a preferred embodiment, the circuit has an inductor in circuit with the fuel injector, an inductor driver switch to control the flow of current through the inductor and an injector driver switch to control the flow of current through the fuel injector. When the inductor is energized by its associated switch, it stores significant electromagnetic energy therein, which is transferred to the injector when it is desired to open the injector to deliver an increased current to the injector to more quickly open it and reduce the start delay time for the injection event.
Abstract:
A solid state electrical switching circuit of high efficiency is employed to increase the speed with which an electromagnet operated device, such as a relay or a hydraulic valve, can be actuated without increasing the power required to maintain the device in the actuated state. The circuit can also be made to provide the momentary increased electrical current required to obtain a given mechanical force when the magnetic gap between the solenoid core and the movable pole piece is open. Both actuation and de-actuation speed of the electromagnet are increased and rapid deactuation is achieved either by a high reverse voltage applied to the solenoid and the return of its energy to the power source or by a diode and capacitor network which transfers the magnetic energy to a second solenoid which thereupon becomes energized.