摘要:
A combustion staging system includes a splitting unit which receives a metered fuel flow and controllably splits the received fuel flow into pilot and mains flows. Pilot and mains fuel manifolds distribute fuel from the splitting unit to the pilot and mains stages. The splitting unit selects and deselects pilot-only operation. Both pilot and mains manifolds are selectable for pilot and mains operation. A cooling flow recirculation line has a delivery section arranged to provide a cooling flow of fuel to the mains manifold when it is deselected during pilot-only operation. Cooling flow enters the delivery section from a high pressure fuel zone of the engine and exits the return section to a low pressure fuel zone of the engine. A controller adjusts the splitting unit during pilot-only operation to partially select the mains manifold thereby increasing the pressure in the mains manifold to meet a target fuel pressure therein.
摘要:
An ecology system includes an ecology tank, a check valve, a shutoff valve, and an ejector pump. The check valve is fluidly connected to the ecology tank and is configured to allow flow from the ecology tank. The shutoff valve is fluidly connected to the check valve, and the ejector pump is fluidly connected to the shutoff valve. The ejector pump is configured to draw fuel from the ecology tank when the shutoff valve is in an open configuration.
摘要:
A fuel forwarding skid for delivering fuel from a storage area to a plurality of turbines includes at least two pumps for delivering fuel to a skid outlet line. A flow control device is connected to the pumps to control an output of the pumps. A recirculation line is in communication with the skid outlet line and is adapted to return a portion of the fuel in the skid outlet line to the storage area. A flow meter is in communication with the recirculation line to measure a rate of flow in the recirculation line, and the flow control device controls the output of at least one of the pumps in accordance with the rate of flow in the recirculation line.
摘要:
A method for purging fuel from a fuel system of a gas turbine engine on shutdown of the engine comprises, in one aspect, terminating a fuel supply to the fuel system and using the residual compressed air to create a reversed pressure differential in the fuel system relative to a forward pressure differential of the fuel system used to maintain fuel supply for engine operation, and under the reversed pressure differential substantially purging the fuel remaining in the system therefrom to a fuel source.
摘要:
A fuel control system (100) for supplying metered fuel flow to a gas turbine engine is disclosed that includes a variable delivery fuel pump (116) for outputting a fuel flow that includes a burn fuel flow for the gas turbine engine and a surplus fuel flow recirculated back to an inlet (124) of the variable delivery fuel pump (116) and a pump control (148, 158, 122) for controlling the output of the variable delivery fuel pump to maintain the surplus fuel flow at a substantially constant rate. A method of controlling a fuel system (100) is also disclosed.
摘要:
A method for monitoring a fuel supply system for a turbine engine, the fuel supply system comprising a fuel pump and a pressure regulation valve configured to receive fuel from an outlet of the fuel pump includes determining by a bypass monitor an amount of bypass flow in a bypass path located between the pressure regulation valve and an inlet of the fuel pump; determining an amount of leakage flow in the fuel supply system by the bypass monitor based on the bypass flow; and determining whether the leakage flow exceeds a predetermined threshold by the bypass monitor, and in the event the leakage flow exceeds the predetermined threshold, indicating a need for maintenance of the fuel supply system.
摘要:
A fuel system for a turbine engine is provided. The fuel system includes a positive displacement pump driven by an electric motor. The pump is rotated in a first direction to deliver fuel to the turbine engine, and a second direction for evacuating fuel from the turbine engine. A shut-off check valve is open in a first direction in response to a first differential pressure created by the pump in the first direction. The shut-off check valve is biased to a closed position when the pump is rotating in the second direction. An ecology check valve is biased to a closed position in the first direction and open in the second direction in response to a second differential pressure created by the pump. The check valves open and close automatically in response to the pressures generated by the positive displacement pump in each of the first and second rotational directions. In this manner, simple, reliable valves are utilized to regulate the flow of fuel in the fuel system.
摘要:
A method for purging fuel from a fuel system of a gas turbine engine on shutdown of the engine comprises, in one aspect, terminating a fuel supply to the fuel system and using the residual compressed air to create a reversed pressure differential in the fuel system relative to a forward pressure differential of the fuel system used to maintain fuel supply for engine operation, and under the reversed pressure differential substantially purging the fuel remaining in the system therefrom to a fuel source.
摘要:
A bypass valve (22) and vent valve (24) are connected in parallel with the normal flow path between a low-pressure fuel pump (12) and a high-pressure fuel pump (16). When a low fuel inlet pressure is detected the bypass valve (22) and vent valve (24) are opened. Gas is vented out of the fuel system and bypasses a heat exchanger (14) between the low and high-pressure pumps (12 and 16), thus avoiding the need to overcome vapor lock between the two pumps. The vent valve (24) passes gas to a drain tank (26) and then closes to prevent the escape of fuel as the high-pressure pump (16) primes.
摘要:
A turbine engine (49) fuel delivery system of the type including a pneumatic governor has an electronic governor and an engine excess stress avoidance feature which disable the pneumatic governor (70) so long as the engine speed exceeds a prescribed value and an electronic control unit (45) continues to function properly. The system transfers governing responsibility to the electronic control unit (45) which controls a torque motor and solenoid valve fuel diversion line (22). The system monitors an engine (49) operating parameter such as gas generator speed (37), power turbine speed, engine output torque, or engine temperature and further diminishes fuel flow to the engine (49) when the monitored parameter exceeds a threshold value. The system resumes normal speed governoring flow when that parameter returns to an acceptable level The system also senses rotor blade pitch to reduce rotor droop and increases fuel flow to the engine (49) when the pitch (44) increases, and decreasing the fuel flow to the engine (49) when the rotor blade pitch (44) decreases.