Abstract:
A method for operating a closure panel of a vehicle, comprising: using a processor, determining whether a first proximity sensor and a second proximity sensor located on a periphery of the vehicle have been sequentially activated to indicate an object moving across the first proximity sensor and the second proximity sensor; and, controlling the closure panel to open or close when the first proximity sensor and the second proximity sensor have been sequentially activated.
Abstract:
A method for operating a closure panel of a vehicle, comprising: using a processor, determining whether a first proximity sensor and a second proximity sensor located on a periphery of the vehicle have been sequentially activated to indicate an object moving across the first proximity sensor and the second proximity sensor; and, controlling the closure panel to open or close when the first proximity sensor and the second proximity sensor have been sequentially activated.
Abstract:
An automated door-opening device is disclosed that includes a first sensor disposed on the outside of the door. The first sensor is adapted to recognize a predetermined pattern of a gesture made by a patron. The gesture made in front of the first sensor opens the door by a first actuator. A second actuator can be used to lock or unlock the door, thereby providing full hand-free operation of the door. A hinge system is disclosed that includes three off-set hinges adapted to utilize the weight of the door to cause the door to self position and allow manual operation of the door.
Abstract:
A door system for a public transit vehicle with at least one door opening and a door that closes this door opening includes a sensor unit, which does three-dimensional and touch-free scanning of a passenger compartment in the area of the door opening and at least one communication element for the context-based communication with passengers based on readings by the sensor unit. A process for monitoring and controlling door systems of a public transit vehicle are also provided including the steps of touch-free and three-dimensional scanning of a passenger compartment in the area of a door opening with a sensor unit and measuring distances, shapes, and movements of objects by evaluating the readings of the touch-free and three-dimensional scanning. The process also includes issuing context-based information to affected passengers via a communications system, whereby the information is based on readings from the sensor unit.a process for monitoring and controlling such a door system.
Abstract:
A sensor unit is provided that is not susceptible to errors for contactlessly actuating a vehicle door. The sensor unit includes a first proximity sensor and a second proximity sensor. Each of the two proximity sensors has an elongate detection field extending substantially in a Y direction. The detection fields of the two proximity sensors are spaced from one another in a direction perpendicular to the Y direction. In addition, the detection field of the first proximity sensor projects beyond the detection field of the second proximity sensor in the Y direction at least on one side by a projecting length.
Abstract:
The invention relates to a control system for driving a motorized closure element of a motor vehicle, wherein a control arrangement and at least one distance sensor are provided in order to detect operator control events, wherein a distance from a user can be detected by means of the distance sensor. The invention proposes that the distance sensor has a changing sensitivity along a sensor extent, and in that a longitudinal movement by the user along the sensor extent produces a pattern in the profile of the sensor signal with respect to time, which pattern is detected by the control arrangement at least as part of an operator control event, owing to the sensitivity profile along the sensor extent.
Abstract:
The invention relates to a method for actuating a closure element arrangement in a motor vehicle, wherein the closure element arrangement has a closure element, a drive arrangement associated with the closure element, a control arrangement and a sensor arrangement having at least one sensor element that is particularly in the form of a proximity sensor, wherein operator control event monitoring involves the control arrangement being used to monitor the sensor measured values from the sensor arrangement for whether there is a predetermined operator control event, and the result of the operator control event monitoring is taken as a basis for actuating the drive arrangement, the mechanical configuration of the motor vehicle being able to be altered by an adjusting process and/or by a fitting process during use based on normal operation.
Abstract:
A method for operating a closure panel of a vehicle, comprising: using a processor, determining whether a first proximity sensor and a second proximity sensor located on a periphery of the vehicle have been sequentially activated to indicate an object moving across the first proximity sensor; and, controlling the closure panel to open or close when the first proximity sensor and the second proximity sensor have been sequentially activated.
Abstract:
A method for activating a closure element arrangement of a motor vehicle, wherein the closure element arrangement has a closure element, a drive arrangement assigned to the closure element, and a control arrangement. In the context of operator control event monitoring by the control arrangement, monitoring is carried out to ascertain whether a predetermined operator control event is present. An activation of the drive arrangement is performed depending on the result of the operator control event monitoring. With assumed freedom of collision of the closure element from the motor vehicle surroundings, the occurrence of various special conditions does not permit the operator control event monitoring, or permits it only to a restricted extent The control arrangement detects the occurrence of predetermined special conditions and the activation of the closure element arrangement is deactivated depending on the respectively detected special condition.
Abstract:
A system for controlling vehicle opening/closing element has a radiation block for irradiating near-infrared light to a peripheral region of an opening/closing element; a photographing block that photographs an image irradiated with the near-infrared light; a hand region extraction block that extracts a user's hand region from brightness of an image photographed by the photographing block; a motion detection block that detects motions of the user's hand from the extracted hand region; and a control block that determines whether or not the detected motions coincide with previously-set predetermined motions and that commands operation of the opening/closing element in accordance with the determined motions.