摘要:
A white LED lighting device driven by a pulse current is provided, which consists of blue, violet or ultraviolet LED chips, blue afterglow luminescence materials A and yellow luminescence materials B. Wherein the weight ratio of the blue afterglow luminescence materials A to the yellow luminescence materials B is 10-70 wt %: 30-90 wt %. The white LED lighting device drives the LED chips with a pulse current having a frequency of not less than 50 Hz. Because of using the afterglow luminescence materials, the light can be sustained when an excitation light source disappears, thereby eliminating the influence of LED light output fluctuation caused by current variation on the illumination. At the same time, the pulse current can keep the LED chips being at an intermittent work state, so as to overcome the problem of chip heating.
摘要:
A white LED lighting device driven by a pulse current is provided, which consists of blue, violet or ultraviolet LED chips, blue afterglow luminescence materials A and yellow luminescence materials B. Wherein the weight ratio of the blue afterglow luminescence materials A to the yellow luminescence materials B is 10-70 wt %:30-90 wt %. The white LED lighting device drives the LED chips with a pulse current having a frequency of not less than 50 Hz. Because of using the afterglow luminescence materials, the light can be sustained when an excitation light source disappears, thereby eliminating the influence of LED light output fluctuation caused by current variation on the illumination. At the same time, the pulse current can keep the LED chips being at an intermittent work state, so as to overcome the problem of chip heating.
摘要:
A multi-chip lighting emitting device (LED) lamp for providing white light includes a submount including first and second die mounting regions thereon. A first LED chip is mounted on the first die mounting region, and a second LED chip is mounted on the second die mounting region. The LED lamp is configured to emit light having a spectral distribution including at least four different color peaks to provide the white light. For example, a first conversion material may at least partially cover the first LED chip, and may be configured to absorb at least some of the light of the first color and re-emit light of a third color. In addition, a second conversion material may at least partially cover the first and/or second LED chips, and may be configured to absorb at least some of the light of the first and/or second colors and re-emit light of a fourth color. Related light fixtures and methods are also disclosed.
摘要:
A white LED lighting device driven by a pulse current is provided, which consists of blue, violet or ultraviolet LED chips, blue afterglow luminescence materials A and yellow luminescence materials B. Wherein the weight ratio of the blue afterglow luminescence materials A to the yellow luminescence materials B is 10-70 wt %:30-90 wt %. The white LED lighting device drives the LED chips with a pulse current having a frequency of not less than 50 Hz. Because of using the afterglow luminescence materials, the light can be sustained when an excitation light source disappears, thereby eliminating the influence of LED light output fluctuation caused by current variation on the illumination. At the same time, the pulse current can keep the LED chips being at an intermittent work state, so as to overcome the problem of chip heating.
摘要:
There is provided composite nano-particles comprising nano-crystal particles dispersed stably and individually in suspension in high concentration without mutual aggregation of the nano-particles. A determined amount of pure water or deionized water is poured into a reactor, into which is introduced nitrogen gas at rate of 300 cm3/min for a given time while agitating with a stirrer to remove dissolved oxygen in the pure water, allowing to stand in an atmosphere of nitrogen. Next, the inside of the reactor is maintained in an atmosphere of nitrogen and sodium citrate as a dispersion-stabilizing agent, an aqueous solution of MPS as a surface-modifying agent, an anion aqueous solution for co-precipitation as a nano-crystal and a cation aqueous solution are added, in that order. Then, an aqueous solution of sodium silicate is added to the reactor, which is then allowed to stand in the dark place in an atmosphere of nitrogen after agitation. At that time, a vitrification-inhibiting agent may be added in order to inhibit the growth of glass layer.
摘要:
Phosphor compositions, white phosphor compositions, methods of making white phosphor compositions, tinted white phosphor compositions, methods of making tinted white phosphor compositions, LEDs, methods of making LEDs, light bulb structures, paints including phosphor compositions, polymer compositions including phosphor compositions, ceramics including phosphor compositions, and the like are provided.
摘要:
A white LED lighting device driven by a pulse current is provided, which consists of blue, violet or ultraviolet LED chips, blue afterglow luminescence materials A and yellow luminescence materials B. Wherein the weight ratio of the blue afterglow luminescence materials A to the yellow luminescence materials B is 10-70 wt %:30-90 wt %. The white LED lighting device drives the LED chips with a pulse current having a frequency of not less than 50 Hz. Because of using the afterglow luminescence materials, the light can be sustained when an excitation light source disappears, thereby eliminating the influence of LED light output fluctuation caused by current variation on the illumination. At the same time, the pulse current can keep the LED chips being at an intermittent work state, so as to overcome the problem of chip heating.
摘要:
A white LED lighting device driven by a pulse current is provided, which consists of blue, violet or ultraviolet LED chips, blue afterglow luminescence materials A and yellow luminescence materials B. Wherein the weight ratio of the blue afterglow luminescence materials A to the yellow luminescence materials B is 10-70 wt %:30-90 wt %. The white LED lighting device drives the LED chips with a pulse current having a frequency of not less than 50 Hz. Because of using the afterglow luminescence materials, the light can be sustained when an excitation light source disappears, thereby eliminating the influence of LED light output fluctuation caused by current variation on the illumination. At the same time, the pulse current can keep the LED chips being at an intermittent work state, so as to overcome the problem of chip heating.
摘要:
A white LED lighting device driven by a pulse current is provided, which consists of blue, violet or ultraviolet LED chips, blue afterglow luminescence materials A and yellow luminescence materials B. Wherein the weight ratio of the blue afterglow luminescence materials A to the yellow luminescence materials B is 10-70 wt %:30-90 wt %. The white LED lighting device drives the LED chips with a pulse current having a frequency of not less than 50 Hz. Because of using the afterglow luminescence materials, the light can be sustained when an excitation light source disappears, thereby eliminating the influence of LED light output fluctuation caused by current variation on the illumination. At the same time, the pulse current can keep the LED chips being at an intermittent work state, so as to overcome the problem of chip heating.
摘要:
A white LED lighting device driven by a pulse current is provided, which consists of blue, violet or ultraviolet LED chips, blue afterglow luminescence materials A and yellow luminescence materials B. Wherein the weight ratio of the blue afterglow luminescence materials A to the yellow luminescence materials B is 10-70 wt %:30-90 wt %. The white LED lighting device drives the LED chips with a pulse current having a frequency of not less than 50 Hz. Because of using the afterglow luminescence materials, the light can be sustained when an excitation light source disappears, thereby eliminating the influence of LED light output fluctuation caused by current variation on the illumination. At the same time, the pulse current can keep the LED chips being at an intermittent work state, so as to overcome the problem of chip heating.