Abstract:
A method for preparing a trithiocarbonate derivative compound includes reacting ethyl cyanoacetate, carbon disulfide (CS2) and ethyl chloroacetate in the presence of potassium carbonate (K2CO3) in an organic solvent to produce 2,2′-(thiocarbonylbis(sulfanediyl))diacetate compound, represented by the structural formula:
Abstract:
Thiocarbonate compounds are reacted with various polyols to introduce hydroxyl end groups thereto which can be subsequently reacted with urethane forming compounds to form various polyurethanes including block copolymers thereof.
Abstract:
Thiocarbonate compounds are reacted with various polyols to introduce hydroxyl end groups thereto which can be subsequently reacted with urethane forming compounds to form various polyurethanes including block copolymers thereof.
Abstract:
The invention relates to novel sulphur compounds, to the production thereof by a method carried out in an aqueous medium and the use thereof in the form of transfer agents in a method for controlled radical polymerisation of acrylic acid and/or acrylic acid with water-soluble monomers in water. The thus obtained polymers are usable in the form of dispersing agents or grinding aid agents and/or aid agents for combined grinding of mineral materials in an aqueous suspension and in the form of dispersing agents directly incorporated into aqueous formulations containing mineral materials.
Abstract:
The invention relates to novel sulphur compounds, to the production thereof by a method carried out in an aqueous medium and the use thereof in the form of transfer agents in a method for controlled radical polymerization of acrylic acid and/or acrylic acid with water-soluble monomers in water. The thus obtained polymers are usable in the form of dispersing agents or grinding aid agents and/or aid agents for combined grinding of mineral materials in an aqueous suspension and in the form of dispersing agents directly incorporated into aqueous formulations containing mineral materials.
Abstract:
This invention concerns a free radical polymerization process, selected chain transfer agents employed in the process and polymers made thereby, in which the process comprises preparing polymer of general Formula (A) and Formula (B) comprising contacting: (i) a monomer selected from the group consisting of vinyl monomers (of structure CH2=CUV), maleic anhydride, N-alkylmaleimide, N-arylmaleimide, dialkyl fumarate and cyclopolymerizable monomers; (ii) a thiocarbonylthio compound selected from Formula (C) and Formula (D) having a chain transfer constant greater than about 0.1; and (iii) free radicals produced from a free radical source; the polymer of Formula (A) being made by contacting (i), (ii) C and (iii) and that of Formula (B) by contacting (i), (ii) D, and (iii); and (iv) controlling the polydispersity of the polymer being formed by varying the ratio of the number of molecules of (ii) to the number of molecules of (iii); wherein Q, R, U, V, Z, Z′, m, p and q am as defined in the text.
Abstract:
This invention provides an efficient method for synthesizing trithiocarbonate RAFT agents, RSC(S)SR′, that can be used in the living polymerization of methacrylates and other olefinic monomers. This invention also provides an efficient method of synthesizing bis(alkylsulfanylthiocarbonyl) disulfides that are useful as intermediates in the synthesis of trithiocarbonate RAFT agents.
Abstract:
Dithiocarbonate derivatives are disclosed, along with a process for preparing the same. The dithiocarbonate compounds can be utilized as initators, chain transfer agents and/or terminators in controlled free radical polymerizations. The dithiocarbonates can be used to produce polymers having narrow molecular weight distribution. Advantageously, the compounds of the present invention can also introduce functional groups into the resulting polymers. The dithiocarbonate compounds have low odor and are substantially colorless.
Abstract:
Dithiocarbonate derivatives are disclosed, along with a process for preparing the same. The dithiocarbonate compounds can be utilized as initators, chain transfer agents and/or terminators in controlled free radical polymerizations. The dithiocarbonates can be used to produce polymers having narrow molecular weight distribution. Advantageously, the compounds of the present invention can also introduce functional groups into the resulting polymers. The dithiocarbonate compounds have low odor and are substantially colorless.
Abstract:
The present invention is directed to a free radical control agent of the structural formula: wherein R1 is a divalent alkyl group of 1 to 12 carbon atoms, R2 and R3 are each independently hydrogen or an alkyl group of 1 to 12 carbon atoms, and R4 is —OH or —COOH, with the proviso that the total carbon atoms of R1, R2, and R3 is no greater than 12; and wherein Y represents a functional group that is capable of activating a vinylic carbon toward free radical addition.