Abstract:
A method for enhancing compressive strength of a lead smelting water-quenched slag-based cementitious material by mechanical activation is provided, belonging to the technical field of solid waste resource treatment. The method includes following steps: grinding and activating water-quenched slag from lead smelting, then mixing with calcium-based solid waste, magnesium-based solid waste, magnesium oxide, portland cement and water, and performing a steam curing and a curing at normal temperature on cementitious material slurry obtained to obtain the lead smelting water-quenched slag-based cementitious material.
Abstract:
Method for treatment of fly ash for preparation of mortars and concretes. The invention is characterized in, that in a first step fly ash is intensively blended with a highly-reactive and dry cement mixture, which mixture have been obtained by mixing Portland cement with a microfiller and possibly a water reducing agent and by grinding said mixture, in that, in a second stage the so obtained blend is intergrinded in a vibratory milling device to achieve the fineness of the final product with a retention on a 45 nullm sieve which is less than 15 percent by weight.
Abstract:
A method for the kinetic regulation of cementitious binders and/or cementitious binder compositions, the method including the steps of providing a cementitious binder, admixing at least one borate mineral to said cementitious binder, and optionally admixing an activator selected from the group consisting of CaO, Ca(OH)2, and/or CaSO4.
Abstract:
A method for producing a clinker substitute for use in cement production includes predrying clay with an iron content >1.5 wt-% in a form of iron oxides and a kaolinite content
Abstract:
A method of dusting-preventive treatment in which a powder having dusting property is treated with fibril-forming PTFE (polytetrafluoroethylene) to impart non-dusting property thereto and the non-dusting property of the powder, after having been reduced during transportation, are economically and advantageously recovered or improved through a relatively simple step. The method comprises: a first dusting-preventive treatment step in which fibril-forming polytetrafluoroethylene is added to a powder having dusting property, and a compression/shear force is exerted to the mixture at a temperature in the range of 20 to 200null C. to thereby regulate powder so as to have a flow value of 150 mm to 200 mm; and a second dusting-preventive treatment step in which a compression/shear force is exerted again at a temperature in the range of 50 to 150null C., without newly adding fibril-forming polytetrafluoroethylene, to the resultant powder after the powder treated in the first step has deteriorated in dusting-preventive property during transportation with transporting means due to such an external force that the polytetrafluoroethylene fibrils partly cleave or powder particles partly fall off polytetrafluoroethylene fibril nets.
Abstract:
A method of dusting-preventive treatment in which a powder having dusting property is treated with fibril-forming PTFE (polytetrafluoroethylene) to impart non-dusting property thereto and the non-dusting property of the powder, after having been reduced during transportation, are economically and advantageously recovered or improved through a relatively simple step. The method comprises: a first dusting-preventive treatment step in which fibril-forming polytetrafluoroethylene is added to a powder having dusting property, and a compression/shear force is exerted to the mixture at a temperature in the range of 20 to 200null C. to thereby regulate powder so as to have a flow value of 150 mm to 200 mm; and a second dusting-preventive treatment step in which a compression/shear force is exerted again at a temperature in the range of 50 to 150null C., without newly adding fibril-forming polytetrafluoroethylene, to the resultant powder after the powder treated in the first step has deteriorated in dusting-preventive property during transportation with transporting means due to such an external force that the polytetrafluoroethylene fibrils partly cleave or powder particles partly fall off polytetrafluoroethylene fibril nets.
Abstract:
The present invention describes a hydraulic cement composition, process and use thereof, wherein the composition comprises a hydraulic cement composition with increased resistance against carbon dioxide (CO2) for application in reservoirs such as oil and gas and carbon capture and storage (CCS) wells; with improved performance of cement paste formulations as a material for application in primary, secondary cementing, recovery and/or plugging operations, of reservoirs/wells that operate with high CO2 content; as a technological alternative to guarantee the integrity of wells in CO2-rich environments for long periods of time, without any additional intervention to the already current operational procedures for cementing wells, and with cost reduction in relation to class G cement (currently, the main raw material); and sufficient chemical resistance to carry out enhanced oil (EOR) and gas (EGR) recovery by injecting high levels of CO2, increasing reservoir pressure throughout the extraction period of hydrocarbon reservoirs.
Abstract:
A method for grinding a solid in a vertical roller mill (VRM), comprising grinding at least one solid in the presence of a grinding stabilizing additive, wherein the grinding stabilizing additive comprises an alkanol amino acid compound or a disodium or dipotassium salt thereof having the structural formula (I): The definitions of variables R1, R2, and R3 are provided herein.
Abstract:
A process for producing blended cement, where the cement contains Portland Cement mixed thoroughly with a microfiller and possibly a water reducing agent to a dry cement mixture and fine supplementary cementitious materials selected from the materials blast furnace slag, fly ash, quartz, silica, amorphous silicon dioxide, limestone and recycled concrete. The invention is characterized in, that said supplementary materials in a first step are being subjected to a grinding in a dry state to a specific surface of at least 1000 cm2/g (Blaine), in that in a second step the supplementary grinded materials are being subjected to a grinding together with at is least 20% by weight of the total grinding mass of a highly reactive cement mixture in a dry state to achieve a specific surface of at least 3000 cm2/g (Blaine), which highly reactive cement mixture contains cement and at least one of the components a SiO2 containing microfiller and a polymer in the form of a powdery water-reducing agent which mixture have been previously been treated in a grinder with vibrating grinding media in which the cement particles are subjected to a large number of impact impulses giving the cement particles an increase in surface energy and chemical reactivity.
Abstract:
A method for producing cement useful for preparing pastes, mortars, concretes and other cement-based materials, having a high workability with reduced water content, high strength and density, and a rapid development of strength, which method includes a mechanicochemical treatment of cement. The method includes a two-stage mechanicochemical treatment of a mixture of cement and at least one of two components, the first component being a SiO.sub.2 -containing microfiller and the second component being a polymer in the form of a powdery water-reducing agent. In the first stage the cement and the first and/or the second component are intensively mixed in a dry state, whereby particles of the first and/or the second component are adsorbed on the cement particles. In the second stage the mixture obtained in the first stage is treated in milling equipment where the particles in the mixture receive in quick succession a large number of direct-changed impact impulses resulting in modification of the surface properties of the cement particles in the form of substantial increase of surface energy and chemical reactivity. The treatment in the second stage is carried out during a sufficiently long period of time in order that a 1-day compressive strength of a 20 millimeter per side cube of cement paste, which has been properly compacted under vibration and hardened at +20.degree. C. in sealed conditions, at least equals 60 MPa.