Abstract:
A method for manufacturing a foam material by using a molten slag includes: introducing the molten slag maintained at 1400° C.-1500° C. into a pool for preserving heat, and adding a viscosity modifier and/or a color modifier to the molten slag to adjust a viscosity and/or a color a product manufactured. The molten slag is discharged into a foaming pour while adding a foaming agent to the molten slag, while controlling the foam and mold at 1250° C.-1400° C. The foamed and molded slag is maintained at 800° C.-1000° C. for 20-30 minutes in a non-reducing atmosphere, and then naturally cooled to a room temperature to obtain the foam material. The produced inorganic nonmetal foam material and products thereof have such characteristics as stable color quality, abrasion resistance, pressure resistance, small thermal conductivity, small shrinkage ratio, and excellent sound absorption, adsorption and filtering performances.
Abstract:
A method for manufacturing a foam material by using a molten slag includes: introducing the molten slag maintained at 1400° C.-1500° C. into a pool for preserving heat, and adding a viscosity modifier and/or a color modifier to the molten slag to adjust a viscosity and/or a color a product manufactured. The molten slag is discharged into a foaming pour while adding a foaming agent to the molten slag, while controlling the foam and mold at 1250° C.-1400° C. The foamed and molded slag is maintained at 800° C.-1000° C. for 20-30 minutes in a non-reducing atmosphere, and then naturally cooled to a room temperature to obtain the foam material. The produced inorganic nonmetal foam material and products thereof have such characteristics as stable color quality, abrasion resistance, pressure resistance, small thermal conductivity, small shrinkage ratio, and excellent sound absorption, adsorption and filtering performances.
Abstract:
Disclosed is a method of fabricating a construction element, the method comprising the manufacturing of a construction element including a slag, wherein the slag is comprising, on a dry basis and whereby the presence of a metal is expressed as the total of the metal present as elemental metal and the presence of the metal in an oxidized state,
a) at least 7% wt and at most 49% wt of iron, Fe, b) at most 1.3% wt of copper, Cu, c) at least 24% wt and at most 44% wt of silicon dioxide, SiO2, d) at least 1.0% wt and at most 20% wt of calcium oxide, CaO, e) at least 0.10% wt and at most 1.50% wt of zinc, Zn, f) at least 0.10% wt and at most 2.5% wt of magnesium oxide, MgO, and g) at most 0.100% wt of lead, Pb.
Further disclosed are improved construction elements comprising the slag.
Abstract:
An apparatus for recovering valuable metals and manufacturing multifunctional aggregate from slag. The apparatus includes a slag reforming processing pot 10 in which molten slag discharged from a converter or an electric furnace is stored, a reducing agent introducing part 20 which introduces a reducing agent into the slag reforming processing pot from above, the reducing agent recovering valuable metals from the molten slag, a reducing agent inflow part 25 which inputs a reducing agent into the slag reforming processing pot through a lower portion of a side of the slag reforming processing pot, the reducing agent recovering valuable metals from the molten slag, and cooling units 30 and 40 which create bubbles and perform controlled cooling in order to convert the molten slag, from which the valuable metals are recovered, into a light material having a porous structure.
Abstract:
Disclosed is a slag comprising, on a dry basis and expressed as the total of the metal present as elemental metal and the presence of the metal in an oxidized state, a) at least 7% wt and at most 49% wt of Fe, b) at most 1.3% wt of Cu, c) at least 24% wt and at most 44% wt of SiO2, and d) at least 2.0% wt and at most 20% wt of CaO, characterised in that the slag comprises, on the same basis, e) at least 0.10% wt and at most 1.00% wt of Zn, f) at least 0.10% wt and at most 2.5% wt of MgO, and g) at most 0.100% wt of Pb. Further disclosed are an improved object comprising the slag, a process for the production of the slag, and a number of uses of the slag, whereby the slag may comprise up to at most 1.50% wt of zinc and down to 1.0% wt of CaO.
Abstract:
A process for preparing solid slag granules from a molten slag composition comprises: (a) providing the molten slag composition; (b) converting the molten slag composition into the solid slag granules in a dispersion apparatus; and (c) sorting the solid slag granules by shape in a separator to produce a plurality of fractions having different sphericities. Granular slag products comprise one or more fractions of solid slag granules produced by the process, and include proppants, roofing granules, catalyst supports, which may be porous or non-porous, and coated or uncoated.
Abstract:
An apparatus for recovering valuable metals and manufacturing multifunctional aggregate from slag. The apparatus includes a slag reforming processing pot 10 in which molten slag discharged from a converter or an electric furnace is stored, a reducing agent introducing part 20 which introduces a reducing agent into the slag reforming processing pot from above, the reducing agent recovering valuable metals from the molten slag, a reducing agent inflow part 25 which inputs a reducing agent into the slag reforming processing pot through a lower portion of a side of the slag reforming processing pot, the reducing agent recovering valuable metals from the molten slag, and cooling units 30 and 40 which create bubbles and perform controlled cooling in order to convert the molten slag, from which the valuable metals are recovered, into a light material having a porous structure.
Abstract:
The invention relates to a method and to a device for foaming molten materials (1), wherein molten material is processed into a melt film (6), foaming agent (3) is mixed into this melt film, this melt film is atomised by an atomiser (13), is deposited as a mixture (4) onto a foaming surface (15) where the mixture is foamed into material foam.