Abstract:
In the manufacture of phosphoric acid from ore, the typical ore comprises minerals containing phosphorus and calcium along with varied amounts of other elements. Certain ores have substantial iron content which needs to be removed in order to produce quality phosphoric acid product. An improved method and associated chemical processing plant are disclosed for removing this iron. The method involves both reducing and adding oxalic acid to wet process phosphoric acid produced using an otherwise conventional manufacturing process. Iron oxalate precipitate is created which can then conveniently be separated therefrom.
Abstract:
In particular, in alternative embodiments, the invention provides for a method to recover silicofluoride and phosphate species from wastewaters, or barometric condenser waters, that are typically utilized in wet-process phosphoric acid facilities. The species are recovered via a continuous ion exchange approach that allows for economic recovery of the materials and especially with the silicofluoride component allows for the production of valuable industrial materials such as hydrofluoric acid and other fluoride salts as well as industrial-grade precipitated silica materials. Return of the treated waste water to the phos-acid plant allows for optimization of reagent usage.
Abstract:
Processes for enhancing filtration rate and/or clarification of phosphoric acid produced by the wet process and containing suspended insoluble particulates by adding to one or more stage of the wet process phosphoric acid production stream an effective amount of a reagent including polymeric microparticles characterized as being anionic or amphoteric and having a weight average molecular weight of greater than 60 Million daltons are provided herein.
Abstract:
A method for producing phosphates and/or compounds containing phosphates is provided, in particular alkaline-earth phosphates, alkaline-earth silicophosphates, and alkaline-earth oxides, comprising the following steps: (a) heating bones and/or fish bones or a composition of said components in a pyrolysis process in the absence of oxygen and under reductive conditions at temperatures between 500 and 1100° C., wherein among other things high-energy gases, vapors, and carbon are produced, (b) subsequently combusting the carbon produced in step (a) under oxidative conditions in an oxidation step, wherein an inorganic radical of alkaline-earth carbonates, alkaline-earth oxides, and alkaline-earth phosphates is produced.
Abstract:
Significant improvements in defoaming in a wet-process phosphoric acid reactor are obtained by adding to the reactor during the digestion process both a surfactant defoamer and a polyacrylamide.
Abstract:
This disclosure relates to a method of preparing a lithium compound that includes preparing a lithium phosphate, mixing the lithium phosphate with sulfuric acid to obtain a mixture, converting the lithium phosphate into lithium sulfate through a reaction in the mixture, and separating the lithium sulfate in a solid phase, wherein in the step of converting the lithium phosphate into lithium sulfate through the reaction in the mixture, a sum concentration ([P+S] mol/L) of phosphorus (P) and sulfur (S) in a liquid phase of the mixture is greater than or equal to 5 mol/L.
Abstract:
Disclosed herein are compositions and methods of mitigating scale in phosphoric acid and ammonium phosphate plants. Scale-mitigating compositions of the invention can be added to phosphoric acid before or during the concentration in the evaporator cycle of a phosphoric acid plant. The compositions retard the formation of scale on surfaces in contact with the phosphoric acid, and thus time between cleaning is extended and plant productivity increased. Further, the scale that forms is softer and more easily cleaned from surfaces, reducing non-operation time of the plant and/or evaporator. Methods of mitigating scale formation in phosphoric acid production and phosphoric acid handling plants are disclosed. In the methods, scales accumulate more slowly and are softer, more tractable, and more easily cleaned from surfaces to which they adhere.
Abstract:
The invention relates to a process for the production of high purity phosphoric acid which has a very low content in antimony, and is suitable for food, pharmaceutical, or electronic industry.
Abstract:
The invention concerns a method for producing phosphoric acid, which consists in: at least an attack of phosphate ore with an attacking liquid containing soluble phosphate ions, forming of an attacking product, separating in the attacking product between an insoluble solid phase containing impurities and a liquid phase having soluble phosphate ions and calcium ions, introducing in the separated liquid phase an acid stronger than phosphoric acid and which forms, with said calcium ions, a soluble calcium salt, and isolating a solution of said calcium salt, not contaminated by the impurities, thereby obtaining a phosphoric acid solution.
Abstract:
A process for recovering fluorine and silicon values from a waste-water stream produced in a wet-process phosphoric acid process which comprises:(a) diluting concentrated sulfuric acid with the waste-water stream and producing an SiF.sub.4 -containing gas during the dilution;(b) scrubbing the SiF.sub.4 -containing gas with phosphoric acid to produce a phosphoric acid solution containing fluosilicic acid;(c) reacting sodium carbonate with the phosphoric acid solution to precipitate solid sodium silicofluoride; and(d) separating the solid sodium silicofluoride from the phosphoric acid.