Abstract:
Provided are systems, methods, and apparatuses for a portable hydration system including a mechanical or electromechanical mechanism for dispensing additives into a liquid or other solute in a portable container. Such additives include solids, liquid, powders, and gases, and include vitamins, minerals, nutritional supplements, pharmaceuticals, and other consumables. Additives are introduced into the hydration device via closed vessels equipped with RFID tags or similar, capable of transferring data about the vessels' contents to the device. Dispensing is initiated manually by direct user action, automatically by the device, and/or externally through an associated application on a user device. Dispensing is adjustable by contextual factors such as a user's preferences, location, activity, physiologic status, and the like, obtained via APIs to third party applications or through more direct measurements or inputs. Consumption of additives and consumable liquids in the container is measured and monitored, and the data used to generate recommendations.
Abstract:
A system comprising a highly concentrated micro component source, an accumulator, a micro component valve and a controller. The accumulator may be configured to keep the highly concentrated micro component under a first pressure. The micro component valve may be configured to dose the highly concentrated micro component at the first pressure for a first period of time. The controller may be configured to control the dosing of the highly concentrated micro component by the micro component valve. The system may further comprise a source of a diluent configured to provide a flow of the diluent during a second period of time at a second pressure. The highly concentrated micro component along with the diluent may be dosed using different time periods and under different pressures.
Abstract:
An example method comprises receiving a control signal to open a first valve of a compressible liquid container within an airtight pressurized container, retrieving a first dispensing profile, each dispensing profile indicating at least one valve and, for each valve, a predetermined period of time for keeping a particular valve open, each of the valves controlling transport of contents a different compressible liquid container contained within the airtight pressurized container to a dispensing system, for each of the one or more valves identified in the first dispensing profile: opening the particular valve identified in the first dispensing profile for the particular predetermined period of time to transport contents over a first liquid transport conduit that is coupled to a particular releasable coupling and the particular valve, and closing the particular valve after the particular predetermined period of time to dispense an amount of contents of the particular compressible liquid container.
Abstract:
A system comprising, a pressurized container including hollow portion and outer portion, pressurized container maintains pressure level in the hollow portion, transport system including two conduits, one transport being coupled to an interface and a valve port, the interface coupled to the hollow portion, the interface maintains pressure level in the hollow portion, one valve port allows flow of liquid volume through one conduit to a dispensing interface via another valve port, an external container is airtight and operable to dispense another liquid volume stored within, another conduit is coupled to the external container and further valve port to refill the liquid volume via the valve, pressure regulation system connected to pressurized container, pressure regulation system including a pressure conduit extending from outer portion through a pressure interface, pressure regulation system operable to compress liquid volume in the environment and a control system controls the valve and pressure regulation system.
Abstract:
A receptacle for storing, pressurizing, and dispensing packaged beverages. The receptacle includes an airtight chamber with a removable lid, wherein the joint between the lid and the chamber is also airtight. A gas valve allows for the inflow and outflow of gas, and a tap port and tap stem allow the beverage to be dispensed without breaking the seal of the chamber. A pressure relief valve allows for more rapid depressurization. The chamber can be used at high and low pressures, such as a partial vacuum, to prevent oxidation of a number of open beverages, such as beers, wines, and sodas. A pressure gauge port coupled with an optional pressure gauge allows a user to verify the appropriate pressure for the type of beverage being preserved. The gas valve may be disposed on a base of the receptacle, as may the pressure relief and/or the pressure gauge port.
Abstract:
A portable water dispenser includes a housing and a bottle receptacle on a top portion of the housing to receive a water bottle. An ionizing device and a pressure booster to increase the pressure of the water so the water can pass through the ionizing device and supply ionized alkaline water out a faucet. The supply of ionized water from a portable water dispenser is an improvement over non-portable applications. At least one outlet hose is used to store the ionized acidic water produced by the ionizing device.
Abstract:
A dispensing system including: a pressure vessel with an inlet and an outlet; a first CF Valve coupled to the inlet; a second CF Valve coupled to the outlet; a bag with elements in the bag coupled to the outlet and located inside the pressure vessel; and a pressure source coupled to the first CF Valve where the first CF Valve pressurizes the pressure vessel via the pressure source to transport elements in the bag to the second CF Valve via the outlet and the second CF Valve dispenses the elements to a dispensing area.
Abstract:
A portable, self-contained beverage apparatus includes a container assembly having a known storage capacity for storing a consumable liquid, and a dispensing assembly disposed within the container assembly that dispenses variable, non-zero quantities of additives into the consumable liquid. The dispensing assembly includes multiple apertures structured and arranged to retain vessels containing the additives to be dispensed into the consumable liquid. The beverage apparatus also includes a level sensor disposed within the container assembly that determines a consumable liquid level of the consumable liquid stored in the container assembly. In certain embodiments, one or more positive displacement pumping mechanisms are configured to pump additive liquid from additive containers into a beverage chamber.
Abstract:
A liquid dispensing system for use with a bag having a pre-attached spigot includes a cavity arranged to receive the bag of liquid. A spigot-recess is configured to engage the spigot of the bag of liquid. A top plate assembly is locatable at or near the top of the system, the top plate assembly including a pressure plate arranged to apply a downward force on the bag of liquid. The system also includes a lifting plate arranged to apply an upward pressure on the bag of liquid.
Abstract:
A liquid dispensing system for use with a bag having a pre-attached spigot includes a cavity arranged to receive the bag of liquid. A spigot-recess is configured to engage the spigot of the bag of liquid. A top plate assembly is locatable at or near the top of the system, the top plate assembly including a pressure plate arranged to apply a downward force on the bag of liquid. The system also includes a lifting plate arranged to apply an upward pressure on the bag of liquid.