Abstract:
The technology disclosed provides a joint for connecting carrier units together so as to dissipate and absorb axial forces experienced by the carrier units. The joint may be comprised of a joint housing and an elastomeric insert. The housing may be comprised of a body portion and a head portion and the head portion may include an annular flange in which the elastomeric insert is configured to be secured. The elastomeric joint is capable of absorbing and dissipating horizontal, rotational, and vertical forces experienced by the carrier units in non-linear travel along a track.
Abstract:
A transport chain for transporting articles includes a sequence of links. Each link defines a substantially flat support surface for the articles to be transported, and wherein each link is hingedly coupled with a previous link in the sequence. Each link includes a respective first link element defining a first portion of the support surface of the link and a respective second link element defining a second portion of the support surface of the link. The first link element and the second link element are hingedly coupled with each other through mechanical coupling allowing the first link element to rotate with respect to the second link element, and vice versa, about a rotation axis perpendicular to the support surface of the link. The mechanical coupling is spaced from the rotation axis.
Abstract:
A plate element of a conveyor and a conveyor which comprises a plurality of these plate elements. The plate element comprises a fastening device to fasten the plate element on a conveying element. A first overlapping region with prongs is formed on the element at a first end section. A second overlapping region with a guide base and projections arranged thereon is formed at a second end section which lies opposite the first end section of the plate element. The first overlapping region is complementary to the second overlapping region. The first overlapping region and the second overlapping region form at least a part of the plate conveying surface The projections of the guide base and the prongs are curved. Optionally, the prongs have a trapezoidal cross section. The guide base comprises at least one opening passing through the guide base between the projections.
Abstract:
An endless conveyor, in particular a link conveyor for items of baggage in the baggage-reclaim area of an airport, which, by very straightforward and functionally reliable design, is to replace the expensive, heavy and maintenance-intensive prior-art conveyor guided on link chains. According to the invention, it is proposed that the traction device provided for the endless conveyor is a cable, in particular wire cable, which connects the conveying elements and on which the conveying elements are fastened at defined intervals such that they can negotiate curves and gradients, and that driving takes place preferably via a linear drive.
Abstract:
Conveyor chain comprising a plurality of modular components having an upper conveyance plate with each modular component comprising a rotation component projecting from said plate and defining a seat with concave surfaces with said seat being designed to receive a pivoting component suited to engage with said concave surfaces to rotate inside the rotation component around an axis perpendicular to the conveyance plane with said pivoting component and said rotation component presenting holes for receiving a pin parallel to the conveyance plane and nearly transversal to the chain running direction with the holes in the rotation component being elongated to allow rotation of the pin around said rotation axis of the pivoting component and with said pin being engaged with an adjacent modular component of the chain to allow its rotation outside the conveyance plane and with the conveyance plate presenting on one side a concave circle arc profile and on the opposite side a convex circle arc profile with said convex profile being designed to be drawn near the concave profile of an adjacent plate with the circle arcs described by said concave and convex profiles of the modular components having centers lying nearly on rotation axes of pivoting components of the chain.
Abstract:
In a conveyor chain coupling structure, a block link A has a connecting rod (2) provided at one of conveying-directional ends thereof to project in the conveying direction and a coupling bore (5) formed at the other conveying-directional end. A pair of toroidal bush bearings (25, 30) is provided and a spherical bush (2) to be fixed to the connecting rod (2) is provided between the pair of toroidal bush bearings (25, 30). The first toroidal bush bearing (25) is fitted slidably on a portion, at the side of the other conveying-directional end, of the spherical bush (20) while the second toroidal bush bearing (30) is fitted at the spherical concave surface (31) thereof slidably on a portion, at the side of the one conveying-directional end, of the spherical bush (20). Owing to this construction, the coupled parts will not rattle, which will thus cause no pulsation or noise but will assure a smooth relative oscillation or reciprocal relative rotation of the block links. Further, this conveyor chain coupling structure is simplified, robust and durable than ever, and can be assembled and disassembled easily even in a narrow space. Also, the maintenance and the like can be made easily. Such jobs will be completed in a reduced time. Thus, the coupling structure very easy to handle and can be designed highly compact. Further, since it is suitable for mass production with a reduced cost of manufacture and can implement an inexpensive conveyor chain.
Abstract:
In one embodiment, a conveyor comprises identical carriages and apparatus for connecting the carriages end-to-end. The carriages each include first wheel pairs supported for a rotation about spaced apart parallel axes and a second wheel pair supported for rotation about a perpendicular axis. The first and second wheel pairs are rotatably supported by self-lubricated bearings. The connection apparatus may comprise either connection rods or a wire rope. In another embodiment, the conveyor comprises identical links each including first and second link portions. The link portions are pivotally interconnected by a first connecting pin which also supports a first pair of wheels. Adjacent links are interconnected by a second connecting pin which also supports a second wheel pair. The first and second wheel pairs are rotatably supported by self-lubricated bearings.
Abstract:
Plastic conveyor belts made up of modules interconnected by transverse rods and capable of straight or radius travel are adjusted as to minimum radius the belt can traverse by restricting collapsibility at the inner edge of the belt. This can be accomplished using shims in the slotted apertures of link ends, preventing full rod travel in those apertures, at each row or at alternating or selected rows of the belt; or shims otherwise placed in the belt to prevent full collapse; or by using different modules in certain rows, with less collapsibility; or by substituting different edge modules in belts of multiple modules per row. In this way, a basic radius conveyor belt can be defined, with a relatively tight minimum radius, and then can be modified so as to be custom-fitted to spiral conveyor or other belt systems having specific curve radii which are larger than the radius of the basic belt. By substantially matching the conveyor belt's minimum achievable radius to the actual radius in service on the conveyor belt system, better driving performance is achieved, eliminating belt edge chatter and vibration.
Abstract:
An enclosed track conveyor chain assembly and method of construction includes a plurality of guide link assemblies and load link assemblies connected to form a conveyor chain assembly. Each load link assembly includes a pair of side walls and forward and rearward ends defining an opening. A pair of wheel assemblies supports the load link on the horizontal surfaces of the track. A guide link member is inserted into the opening of adjacent load links. Distal ends of the guide links are connected via a fastener to thereby connect adjacent load link members to form the enclosed track chain. Each guide link member includes a plurality of flat areas on the distal ends of the arms to provide a connecting surface. A fastener is inserted through openings in the distal ends to secure the guide link members together. Preferably, the connection between guide link members is pivotal to allow pivoting action of the guide link. Further, the guide link assemblies include a wheel assembly which is adapted to contact the vertical surfaces of the track.
Abstract:
Side-flexing conveyor belt built up of a number of chain links which are joined together in a hinge-like manner by means of transverse rods (5, 6) through openings in the individual chain links. Use is made of chain links of at least two types, i.e. edge chain links (1, 2) with one-sided reinforcement (18), and module chain links (3, 4) between the edge chain links. The chain links of both types can be configured in various module breadths, and the individual links are staggered in relation to one another. Each link has a first row of eye parts (12) with mutual intervals between them in the transverse direction, and with elongated holes in line with one another for the engagement of a transverse rod, and a second row of eye parts (11) disposed midway between the first-mentioned eye parts and with holes in line with one another for the engagement of a second transverse rod, and the two sets of eye parts are held together by a transversely-extending bridge part. The edge chain links' one-sided reinforcement (18) extends over at least one eye part for each row, so that at least one eye part is replaced by at least one traction side plate (7) in each link, in that said side plates have transverse openings corresponding to the eye part's openings and elongated holes and are in engagement with adjacent rods (5, 6).