Abstract:
A strap loading assembly for a strapping machine provides a feed path for the strap material. The loading assembly includes a first rail and a second rail movable between a deployed position and a stowed position. The second rail, when in the deployed position, confronts the first rail and defines a strap guide with the first rail. The second rail, when in the stowed position opens the strap guide. A link operably connects the first and second rails. Strap material in the strap guide, when in tension, exerts a force on the first rail to move the link which moves the second rail from the deployed position to the stowed position. A strapping machine with a strap loading assembly is also disclosed.
Abstract:
An accumulator device (1) for the tying wire of a tying machine used in pulp production has a drive (3) at the inlet to the accumulator device and another drive (7) at the outlet from the accumulator device. By means of the accumulator device (1) according to the invention and the two drives (3, 7), it is possible to store the entire length of wire required for one tying cycle temporarily and then to remove the wire from the accumulator for the tying cycle. In this way, a dynamic accumulator volume is created for the tying wire in the accumulator device (1).
Abstract:
A strapping system includes a strap exchanger that is capable of delivering one or more straps to a component of the strapping system. The strap exchanger feeds a strap to a downstream component of the strapping system. A track assembly receives the strap and uses that strap to bundle product. The strap exchanger is capable of repeatedly delivering straps to the strapping system to reduce, limit, or substantially eliminate downtime associated with manually loading straps into the strapping system.
Abstract:
A strapping system includes a strap exchanger that is capable of delivering one or more straps to a component of the strapping system. The strap exchanger feeds a strap to a downstream component of the strapping system. A track assembly receives the strap and uses that strap to bundle product. The strap exchanger is capable of repeatedly delivering straps to the strapping system to reduce, limit, or substantially eliminate downtime associated with manually loading straps into the strapping system.
Abstract:
The present description discusses apparatuses and methods for applying straps around a bundle of objects by applying a variable force to tension the strap around the bundle of objects and then actuating a series of cams to control the sealing of the strap around the bundle of objects. The apparatus includes a track assembly extending substantially about a strapping station. The track assembly is adapted to receive a strap and to release the strap during a tensioning operation. An accumulator delivers strap to the track assembly. The accumulator has a strap conveyor system that defines a strap path and an accumulator container adjacent to the strap path. Strap can be accumulated in the accumulator container and subsequently delivered to the track assembly.
Abstract:
A system and method are disclosed for pre-stretching plastic material that is later used in wrapping a plurality of objects. Plastic material is continuously or non-continuously provided to a pre-stretching device including a plurality of rollers. The plastic material is passed around the plurality of rollers within the pre-stretching device and is then fed through an accumulator to a strapping device. The passing of the plastic material around the plurality of rollers causes the plastic material to stretch by a predetermined amount before entering the strapping device.
Abstract:
A strapping machine includes a supply unit, a guidance frame, a pressing plate, feeder runners, a closure aggregate, a storage unit, a feeder, an insertion device and a guidance structure. The closure aggregate is vertically aligned with the pressing plate and manoeuvrable, whilst the supply unit is located within close proximity of the strapping area and the pressing plate. The guidance structure includes one canal-like transfer line leading at least to the closure aggregate. The insertion device is accessible from outside, is aligned with the supply unit and is attached to a lower section of an automatically opened guidance canal. The strapping material is fed synchronically to the transfer line with the pressing plate adjustable for height. The insertion mechanism incorporates feeder and runners. The storage unit adjacent to the supply unit is aligned to the exterior of the strapping area.
Abstract:
A strapping machine configured to position a strap material around an associated load when in a feed mode and to tension the strap material and seal the strap material to itself around the load when in a tensioning mode includes an improved winder assembly. The machine includes a flame, a strap material supply and a strapping head. A strap path is defined from the strap material supply to the strapping head. The strapping head includes a feed element for conveying the strap material during the feed mode in a first direction around the load and for conveying the strap material in a second, opposite direction to tension the strap material around the load. The strapping head includes a rotating winder for tensioning the material around the load. The winder has a peripheral strap path and a central strap path. The strap material moves through the central strap path when the strap material is conveyed in the first and second directions and wraps around the peripheral strap path after the strap material has moved in the second direction and when in the tensioning mode. The strapping head further includes a winder arm configured to cooperate with the winder. The winder arm is biased to rest against the winder to direct strap material to a predetermined region of the strapping machine when the strapping machine transitions from the rewind mode to the feed mode.
Abstract:
Disclosed is a tape-leading mechanism for an automatic packer including a housing having a tape inlet provided at an upper portion thereof, a tape-storing roller set in the housing near the tape inlet, and a movable tape-feeding bridge interconnecting the tape-storing roller set and a tape-operating unit for automatically feeding a tape to the tape-operating unit which thereafter sends the tape to a tape rail for packing a package. The movable tape-feeding bridge downward extends into a lower tape-storing chamber when there is no tape to be fed to the tape-operating unit. And, when there is a tape to be threaded into the housing and led to the tape-operating unit, a push button can be depressed to rotate the tape-storing roller set and therefore move the tape-feeding bridge to a position interconnecting the tape-storing rollers and the tape-operating unit. After the tape is successfully led to the tape-operating unit, the tape-feeding bridge turns downward again to send the unused tape into the tape-storing chamber.
Abstract:
A strapping machine for applying a band around an object includes a pool box in which slackened band is accumulated prior to be fed around an object by a main feed mechanism. The pool box contains a feed device which draws-in the band from a reel, and a passage-forming structure for guiding the band toward the main feed mechanism. The passage-forming structure contains a balance bar and an opposing guide arm. The balance bar is displaced by the band as the band accumulates in the passage. When the balance bar is displaced by a predetermined amount, a sensor shuts off the feed device. Thereafter, the guide arm is moved to a passage-enlarging position, whereupon the balance bar is permitted to return to its original position, enabling the feed device to resume its feeding of the band. The band thus accumulates within the enlarged passage.