摘要:
In one embodiment there is provided a flying toy that can be manually pumped with air. The pressurized air is kept in a canister and use to drive a propeller to propeller the toy for flight.
摘要:
This disclosure relates to a method for realizing obstacle avoidance functionality of a flying device. The method includes: providing a flying device without obstacle avoidance functionality, wherein the flying device includes a flying body and a remote controller; the flying body includes a wireless receiving module, a flying controlling module and an actuator; and second, installing a sensor and a micro controlling module; the wireless receiving module only send a first flying order that is from the remote controller, to the micro controlling module; the sensor only send an obstacle information to the micro controlling module; and the micro controlling module calculates the first flying order and the obstacle information to obtain a second flying order, and sends the second flying order to the flying controlling module; and the flying controlling module controls the flying body to fly according to the second flying order.
摘要:
The invention relates to a remote control system (195) comprising mobile units (190, 1102, 1105), and a by control means (106, 110) provided controller unit for these. Said units are equipped with a function performing means (161) and transferring means (207, 270) that generates information signals (301) respectively transmits the same. Signal processing means (261, 268) and their exerting function (314) for controlling the functions of the respective mobile unit are placed respectively takes place only in the current mobile device. In accordance with the proposed use in connection with the present invention object, a controller area network type of system is constructed with a distributed and integrated network structure (1751). Only signal processing means (1753) and their function exertion means (1754) for controlling of a mobile unit, which is positioned in the actual unit, is used for its control. According to the method establishes a structure of a controller area network type with modular units (1753′), nodes (1753) and a communication protocol (501) for the node communication. All messages transmitted by the nodes are received by the modular units (1754, 1792). A information comparison (1755, 176) is used to select respective message or part thereof.
摘要:
A gaming system for enabling three-dimensional game play of remote-control craft controlled by a controller, each craft including a communication system with both radio frequency (RF) and infrared (IR) capabilities. The system can include a plurality of hovering remote-control flying craft each controlled by a handheld controller, and further may include at least one additional game accessory elements, such as a puck, a ground station or a gun. Each pairing of craft and controllers communicate via an RF protocol that transmits at least control communications between the controller and the craft based on pair identification information in an RF communication protocol. The craft and game-accessory elements also communicate via at least an IR protocol that communicates game-play information. Selectable pairs of craft and controllers may be assigned to different teams for playing multiplayer team games based on team identification information in the RF communication protocol.
摘要:
According to a first aspect of the invention, there is provided a method for operating a multicopter experiencing a failure during flight, the multicopter comprising a body, and at least four effectors attached to the body, each operable to produce both a torque and a thrust force which can cause the multicopter to fly when not experiencing said failure. The method may comprise the step of identifying a failure wherein the failure affects the torque and/or thrust force produced by an effector, and in response to identifying a failure carrying out the following steps, (1) computing an estimate of the orientation of a primary axis of said body with respect to a predefined reference frame, wherein said primary axis is an axis about which said multicopter rotates when flying, (2) computing an estimate of the angular velocity of said multicopter, (3) controlling one or more of said at least four effectors based on said estimate of the orientation of the primary axis of said body with respect to said predefined reference frame and said estimate of the angular velocity of the multicopter. The step of controlling one or more of said at least four effectors may be performed such that (a) said one or more effectors collectively produce a torque along said primary axis and a torque perpendicular to said primary axis, wherein (i) the torque along said primary axis causes said multicopter to rotate about said primary axis, and (ii) the torque perpendicular to said primary axis causes said multicopter to move such that the orientation of said primary axis converges to a target orientation with respect to said predefined reference frame, and (b) such that said one or more effectors individually produce a thrust force along said primary axis.
摘要:
An aerial vehicle capable of convertible flight from hover to linear flight includes a body having a longitudinal body axis, a plurality of forward wings, a plurality of aft wings, at least one motor, and at least three aerodynamic propulsors driven by the at least one motor. Each forward wing extends a forward wing plane. Each aft wing extends from an aft wing plane. The aerodynamic propulsors are mounted longitudinally between the plurality of forward wings and plurality of aft wings.
摘要:
A hovering remote-control flying craft having a molded frame assembly includes a plurality of arms extending from a center body with an electric motor and corresponding propeller on each arm. In various embodiments, the motor and propeller are mounted downward-facing at a distal portion of each arm with a motor cover over the motor. The center body can be formed of a two-piece molded structure that sandwiches a circuit board to provide structural support for the frame. The circuit board can include a plurality of tabs that facilitate mounting of wire connectors, and can also provide antennas and emitters for both IR and RF communications. In some embodiments, a removable safety ring protects the propellers from lateral contact.
摘要:
The embodiments herein disclose a personal UAV kit for storing, preparing and remote control of micro UAVs (40). The UAV kit includes a base unit (10), a control unit (30) and at least one UAV. The UAVs can typically be a winged aircraft with foldable wings or a helicopter with a two-bladed or foldable rotor. The base unit comprises UAV compartments for housing at least one UAV, bay (14) for storing the control unit, batteries and electronic components for charging, communication, control and processing and storing of data. In addition, the system includes an eye near display device for viewing system information and sensor data, typically live video, transmitted from the UAV.
摘要:
An embodiment of the invention includes a flying vehicle having a fuselage, a pair of wings, the ability to manually apply a force against a portion of the wings causing the leading edge of each wing to sweep outwardly, the ability to mechanically holding the wings in a predetermined swept position, and the ability to bias the wings towards an initial inwardly swept position. A launcher rod with a rubber band is used to launch the vehicle.
摘要:
A gyro unit mounted on a steered object for performing steering based on a steering signal received from the outside comprises a gyro sensor, a calculation portion and a controller. The calculation portion is configured to perform calculations for posture control of the steered object based on the steering signal and a detection signal of the gyro sensor. The controller is configured to perform control such that a control direction of the posture control switches when the steered object moves forward and backward.