摘要:
The present application discloses methods, circuits and systems for power conversion, using a universal multiport architecture. When a transient appears on the power input (which can be, for example, polyphase AC), the input and output switches are opened, and a crowbar switch shunts the inductance which is used for energy transfer. This prevents this inductance from creating an overvoltage when it is disconnected from outside lines.
摘要:
The present application discloses methods, circuits and systems for power conversion, using a universal multiport architecture. When a transient appears on the power input (which can be, for example, polyphase AC), the input and output switches are opened, and a crowbar switch shunts the inductance which is used for energy transfer. This prevents this inductance from creating an overvoltage when it is disconnected from outside lines.
摘要:
Methods and systems for transforming electric power between two or more portals. Any or all portals can be DC, single phase AC, or multi-phase AC. Conversion is accomplished by a plurality of bi-directional conducting and blocking semiconductor switches which alternately connect an inductor and parallel capacitor between said portals, such that energy is transferred into the inductor from one or more input portals and/or phases, then the energy is transferred out of the inductor to one or more output portals and/or phases, with said parallel capacitor facilitating “soft” turn-off, and with any excess inductor energy being returned back to the input. Soft turn-on and reverse recovery is also facilitated. Said bi-directional switches allow for two power transfers per inductor/capacitor cycle, thereby maximizing inductor/capacitor utilization as well as providing for optimum converter operation with high input/output voltage ratios. Control means coordinate the switches to accomplish the desired power transfers.
摘要:
Methods and systems for transforming electric power between two or more portals. Any or all portals can be DC, single phase AC, or multi-phase AC. Conversion is accomplished by a plurality of bi-directional conducting and blocking semiconductor switches which alternately connect an inductor and parallel capacitor between said portals, such that energy is transferred into the inductor from one or more input portals and/or phases, then the energy is transferred out of the inductor to one or more output portals and/or phases, with said parallel capacitor facilitating “soft” turn-off, and with any excess inductor energy being returned back to the input. Soft turn-on and reverse recovery is also facilitated. Said bi-directional switches allow for two power transfers per inductor/capacitor cycle, thereby maximizing inductor/capacitor utilization as well as providing for optimum converter operation with high input/output voltage ratios. Control means coordinate the switches to accomplish the desired power transfers.
摘要:
Devices, systems and methods for operating, monitoring and diagnosing photovoltaic arrays used for solar energy collection. The system preferably includes capabilities for monitoring or diagnosing an array, under some circumstances, by using a bidirectional power converter not only to convert the DC output of the array to output power under some conditions, but also, for diagnostic operations, applying a back-converted DC voltage to the array.
摘要:
Devices, systems and methods for operating, monitoring and diagnosing photovoltaic arrays used for solar energy collection. The system preferably includes capabilities for monitoring or diagnosing an array, under some circumstances, by using a bidirectional power converter not only to convert the DC output of the array to output power under some conditions, but also, for diagnostic operations, applying a back-converted DC voltage to the array.
摘要:
Methods and systems for power conversion. An energy storage capacitor is contained within an H-bridge subcircuit which allows the capacitor to be connected to the link inductor of a Universal Power Converter with reversible polarity. This provides a “pseudo-phase” drive capability which expands the capabilities of the converter to compensate for zero-crossings in a single-phase power supply.
摘要:
Methods and systems for power conversion. An energy storage capacitor is contained within an H-bridge subcircuit which allows the capacitor to be connected to the link inductor of a Universal Power Converter with reversible polarity. This provides a “pseudo-phase” drive capability which expands the capabilities of the converter to compensate for zero-crossings in a single-phase power supply.
摘要:
Methods and systems for transforming electric power between two or more portals. Any or all portals can be DC, single phase AC, or multi-phase AC. Conversion is accomplished by a plurality of bi-directional conducting and blocking semiconductor switches which alternately connect an inductor and parallel capacitor between said portals, such that energy is transferred into the inductor from one or more input portals and/or phases, then the energy is transferred out of the inductor to one or more output portals and/or phases, with said parallel capacitor facilitating “soft” turn-off, and with any excess inductor energy being returned back to the input. Soft turn-on and reverse recovery is also facilitated. Said bi-directional switches allow for two power transfers per inductor/capacitor cycle, thereby maximizing inductor/capacitor utilization as well as providing for optimum converter operation with high input/output voltage ratios. Control means coordinate the switches to accomplish the desired power transfers.
摘要:
Methods and systems for power conversion. An energy storage capacitor is contained within an H-bridge subcircuit which allows the capacitor to be connected to the link inductor of a Universal Power Converter with reversible polarity. This provides a “pseudo-phase” drive capability which expands the capabilities of the converter to compensate for zero-crossings in a single-phase power supply.