摘要:
A device, system and method for intelligently dropping frames in a congested wireless network. Video frames from a video encoder may be received and queued in an ordered sequence of outgoing video frames in a transmission queue to be transmitted as data packets by a wireless communication circuit. When network congestion is detected, a relative contextual importance level of an incoming frame received from the video input channel may be compared relative to at least one frame in the transmission queue. The compared frame that has a lower relative contextual importance level may be dropped or omitted from the transmission queue, thereby transmitting data packets of the frames in the transmission queue without the dropped or omitted frames.
摘要:
A wireless device receives a packet from a sender node according to a routing protocol and determines a position information of the sender node. The wireless device calculates a distance to the sender node from the wireless device and discards the packet if the distance is outside of a range. Otherwise, the packet is processed according to the routing protocol. As a result, the approach may be suited to testing type environments where the wireless devices are proximately placed and yet one may wish to simulate real-world distances between the wireless devices.
摘要:
A wireless device operates in a first wireless network using a first wireless protocol to receive a set of provisioning parameters for joining a second wireless network that uses a second wireless protocol. The first wireless network may be based on a shared wireless broadcast medium. The wireless device then joins the second wireless network using the set of provisioning parameters. In an embodiment the first wireless protocol is according to IEEE 802.11 specifications, while the second wireless protocol is according to IEEE 802.1.5.4 specifications.
摘要:
A wireless station (STA) of a wireless network operates to estimate intervals at which to transmit keep-alive messages to an access point (AP) with which the STA is associated. The STA receives a de-authentication frame from the AP. The de-authentication frame indicates that the AP has disassociated the STA due to inactivity. The STA determines a keep-alive interval based on one or more de-authenticated messages, including the de-authentication frame. The STA transmits keep-alive messages according to the determined keep-alive interval.
摘要:
A wireless station in a WLAN generates a first set of data elements for sending to a final destination. The wireless station forms a first Internet Protocol (IP) packet with a header portion and a payload portion. The header portion specifies an IP address of a neighbor access point (AP) as the next hop destination. The payload portion of the IP packet includes an IP address of the final destination to indicate that the data elements are to be delivered to the final destination. The wireless station transmits the IP packet to the neighbor AP according to the IP address of the neighbor AP. Extended connectivity based on wireless paths between stations of a wireless local area network (WLAN) is thus provided.
摘要:
An aspect of the present disclosure enables convenient provisioning of multiple wireless devices. In an embodiment, a provisioning agent (e.g., a smart phone) identifies wireless devices requiring provisioning to operate as wireless stations and communicates with each wireless device to provide provisioning parameters for joining a first basic service set (BSS). However, during such communication, the provisioning agent operates as a wireless station and each wireless device operates as an access point (AP) outside of the first BSS. Each wireless device is enabled to be configured according to the received provisioning parameters to thereafter operate as a corresponding wireless station of the first BSS.
摘要:
A rate selection method for WiFi based wireless sensor devices include storing parameters of communication packets successfully transmitted and received by a wireless device prior to turning off a wireless device, comparing a first set of parameters of a received communication signal to the parameters of the received communication packets and identifying at least one received communication packet of the communication packets based on the comparison of the first set of parameters. The rate selection method also includes comparing a second set of parameters of the received communication signal to the parameters of the identified at least one received communication packet to identify a close received communication packet of the identified at least one received communication packet and identifying a communication rate for current packets communicated by the wireless device based on the comparison of the second set of parameters.
摘要:
According to an aspect, a wireless station uses a low-frequency clock during sleep intervals and a high-frequency clock during awake intervals. Drift between the low-frequency clock and the high-frequency clock are corrected to enable aligning a wake time instant of the wireless receiver with start of beacon transmissions from an access point, and thereby to reduce power wastage. According to another aspect, errors between the clock of an access point and that of a wireless station are corrected. The wireless station computes an error between the clocks, and extrapolates the error for a sleep interval to compute a wake-up time instant. The correction and extrapolation are performed in every awake interval. Again, undesired power consumption in the wireless station is thereby reduced.
摘要:
A WiFi-enabled embedded device boots as a first access point. The WiFi-enabled embedded device communicates with a first wireless station to receive configuration parameters while continuing to operate as an access point. The WiFi-enabled embedded device then applies the configuration parameters internally to cause the WiFi-enabled embedded device to operate as a second wireless station. In an embodiment, the first wireless station discovers a configuration service advertized by the WiFi-enabled embedded device using mDN/DNS-SD, and automatically provides the configuration parameters to the WiFi-enabled embedded device. Convenient provisioning of the WiFi-enabled embedded device is thus made possible.
摘要:
An end device in a network is designed to operate consistent with multiple versions of the internet protocol. The end device determines which version of the internet protocol, according to which the network is operative, by monitoring a set of packets on the network. Based on the determination of the version of internet protocol, the end device loads in an internal volatile memory only those instructions and data required for operation according to the determined version. Instructions and data required for operation according to other version(s) are not loaded into the volatile memory. Size requirements of the volatile memory are thereby reduced.