摘要:
Shared-current electronic systems (120, 130, 140, 150, 160, 170, 180, 190, and 200) include two or more solid-state electronic devices, such as a solid-state amplifying device (Q1), a baseband processor (110), and a multiplier/up-converter (112), that are connected in dc series or dc series-parallel, that may be connected in rf series, and that either fixedly or variably share percentages of a dc source voltage. Various embodiments produce separate rf outputs, variably shift the phase of a single rf output, variably shift rf power between/among rf outputs, or produce a frequency-compressed modulation. The apparatus includes means (122, 162, 162A, and /or 162B) for precisely proportioning percentages of the regulated dc source voltage to the dc series-connected electronic devices irrespective of production variations in operating parameters of the electronic devices and/or drift of the electronic devices.
摘要:
Divided-voltage FET amplifiers (10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 130, 140, 150, 160, 170, 180, 200, or 220) include two or more solid-state current devices, preferably gallium arsenide FETs (Q1, Q2, Q4, Q5, Q6, and/or Q8), connected in series or series-parallel for dc operation, and connected in parallel for rf operation, thereby improving power efficiency by using the same current two or more times to develop rf power. Various ones of the embodiments produce separate rf outputs, separately amplify two rf outputs and subsequently combine them into a single rf output, and/or selectively phase shift rf outputs. Isolation between rf frequencies and dc voltages includes using decoupling capacitors with selected resonant frequencies and low effective series resistances (ESRs) and using inductors with selected self-resonant frequencies for rf chokes. Preferably, providing low ESRs includes paralleling two or more decoupling capacitors (Ca-n) with low ESRs, whose resonant frequencies can be distributed for wide-band operation.
摘要:
Shared-current electronic systems (120, 130, 140, 150, 160, 170, 180, 190, 200, 210, and 220) include two or more electronic devices, such as an electronic device (Q1), a baseband processor (110), and a multiplier/up-converter (112), that are connected in dc series or dc series-parallel, that may be connected in rf series, and that either fixedly or variably share portions of a dc source voltage. Various embodiments produce separate rf outputs, variably shift the phase of a single rf output, variably shift rf power between/among rf outputs, or produce a frequency-compressed modulation. The apparatus includes means (122, 162, 162A, and/or 162B) for precisely proportioning the regulated dc source voltage to one or more of the dc series-connected electronic devices irrespective of production variations in operating parameters of the electronic devices and/or drift of the electronic devices.
摘要:
The present invention provides an improved high power RF (radio frequency) splitter/combiner that is appropriate for use in a wide range of frequencies and applications, including KHz to GHz, including in the L, S, and C bands. The present invention provides a high power RF splitter/combiner that operates without the inconvenience of the balanced isolation load requirement of the Wilkinson splitter/combiner topology—i.e. the isolation load returns to ground rather than being connected between a pair of floating nodes.
摘要:
Shared-current electronic systems (10, 20, 26, 30, 38, 48, 66, 70, 82, 90, 96, 100, 104, 108, 118, and 122) include two or more solid-state electronic devices, such as a solid-state amplifying device Q1, a baseband processor 110, and a multiplier/upconverter 112, that are connected in dc series or dc series-parallel, and that either fixedly or variably share percentages of a dc supply voltage. Various embodiments produce separate rf outputs, variably shift the phase of a single rf output, variably shift rf power between/among rf outputs, or produce a frequency-compressed modulation. RF decoupling of the dc series-connected electronic devices comprises making an effective series resistance (ESR) of an rf decoupling capacitance lower than the ESR of a porcelain capacitor that resonates at the operating frequency of the electronic device that is being decoupled.