摘要:
A technique is provided for recognizing faces in an image stream using a digital image acquisition device. A first acquired image is received from an image stream. A first face region is detected within the first acquired image having a given size and a respective location within the first acquired image. First faceprint data uniquely identifying the first face region are extracted along with first peripheral region data around the first face region. The first faceprint and peripheral region data are stored, and the first peripheral region data are associated with the first face region. The first face region is tracked until a face lock is lost. A second face region is detected within a second acquired image from the image stream. Second peripheral region data around the second face region are extracted. The second face region is identified upon matching the first and second peripheral region data.
摘要:
A method for correcting a distorted input image includes determining a local region of an image to be displayed and dividing the region into an array of rectangular tiles, each tile corresponding to a distorted tile with a non-rectangular boundary within the input image. For each tile of the local region, maximum and minimum memory address locations of successive rows of the input image sufficient to span the boundary of the distorted tile are determined. Successive rows of the distorted input from between the maximum and minimum addresses are read. Distortion of the non-rectangular portion of the distorted input image is corrected to provide a tile of a corrected output image which is stored.
摘要:
A technique is provided for generating sharp, well-exposed, color images from low-light images. A series of under-exposed images is acquired. A mean image is computed and a sum image is generated each based on the series of under-exposed images. Chrominance variables of pixels of the mean image are mapped to chrominance variables of pixels of the sum image. Chrominance values of pixels within the series of under-exposed images are replaced with chrominance values of the sum image. A set of sharp, well-exposed, color images is generated based on the series of under-exposed images with replaced chrominance values.
摘要:
A method of automatically determining a need to service a digital image acquisition system including a digital camera with a lens assembly includes analyzing pixels within one or more acquired digital images according to probability determinations that such pixels correspond to blemish artifacts. It is automatically determined whether a threshold distribution of blemish artifacts is present within one or more of the digital images. A need for service is indicated when at least the threshold distribution is determined to be present.
摘要:
A method of detecting and applying a vertical gaze direction of a face within a digital image includes analyzing one or both eyes of a face within an acquired image, including determining a degree of coverage of an eye ball by an eye lid within the digital image. Based on the determined degree of coverage of the eye ball by the eye lid, an approximate direction of vertical eye gaze is determined. A further action is selected based on the determined approximate direction of vertical eye gaze.
摘要:
A method and system for detecting facial expressions in digital images and applications therefore are disclosed. Analysis of a digital image determines whether or not a smile and/or blink is present on a person's face. Face recognition, and/or a pose or illumination condition determination, permits application of a specific, relatively small classifier cascade.
摘要:
A method of detecting a face in an image includes performing face detection within a first window of the image at a first location. A confidence level is obtained from the face detection indicating a probability of the image including a face at or in the vicinity of the first location. Face detection is then performed within a second window at a second location, wherein the second location is determined based on the confidence level.
摘要:
An image processing apparatus for tracking faces in an image stream iteratively receives an acquired image from the image stream including one or more face regions. The acquired image is sub-sampled at a specified resolution to provide a sub-sampled image. An integral image is then calculated for a least a portion of the sub-sampled image. Fixed size face detection is applied to at least a portion of the integral image to provide a set of candidate face regions. Responsive to the set of candidate face regions produced and any previously detected candidate face regions, the resolution is adjusted for sub-sampling a subsequent acquired image.
摘要:
A system and method for reducing noise in images is disclosed. The present invention reduces noise and preserves contrast of an image to be displayed, the image having pixels, by (1) comparing a value of a first pixel to values of a set of other pixels; (2) comparing values of pixels neighboring the first pixel to values of further pixels neighboring the set of other pixels; (3) determining, for each pixel in the set of other pixels, a weight based on results of steps (1) and (2); (4) calculating a de-noised pixel value based on the weights of each pixel in the set of other pixels; and (5) replacing the value of the first pixel with the de-noised pixel value.
摘要:
In an embodiment, a device comprises a plurality of elements configured to apply a filter to multiple groups of pixels in a neighborhood of pixels surrounding a particular pixel to generate a matrix of filtered values; compute, from the matrix of filtered values, a first set of gradients along a first direction and a second set of gradients along a second and different direction; determine how many directional changes are experienced by the gradients in the first set of gradients and the gradients in the second set of gradients; compute a first weighted value for a first direction and a second weighted value for a second direction; and based, at least in part, upon the first and second weighted values, compute an overall texture characterization value for the particular pixel, wherein the overall texture characterization value indicates a type of image environment in which the particular pixel is located.