Abstract:
A method of manufacturing a contact lens 110 is disclosed. The method comprises manufacturing a rod of lens material 101, the rod 101 containing a plurality of electronic components 102 spaced apart along its length, separating the rod 101 into a plurality of lens blanks 106, each lens blank 106 containing at least one of said electronic components 102, and machining the front and/or back surface of a lens blank 106 to produce a contact lens 110 containing the at least one electronic component 102.
Abstract:
Contact lenses having even surface coatings are manufactured by coating a polyvinyl alcohol polymer on a lens-forming surface of a contact lens mold, applying a contact lens coating composition onto the polyvinyl alcohol polymer, and curing a contact lens formulation in the coated contact lens mold. During curing, the coating composition transfers from the mold to the contact lens surface. The polyvinyl alcohol helps prevent the contact lens coating composition from being solubilized by the contact lens composition during the curing step.
Abstract:
A method is provided for manufacturing ophthalmically-acceptable, distortion-free silicone hydrogel contact lenses without the use of volatile organic solvents in the manufacturing process. The contact lenses are extract with an extraction liquid comprising an aqueous solution of a non-volatile organic solvent, such as ethyl lactate.
Abstract:
Miscible polymerizable compositions comprising at least one primary amine-containing methacrylate monomer, or at least one primary amine-containing methacrylamide monomer, in addition to 20-80 wt. % siloxane monomer, 20-80 wt. % hydrophilic monomer, cross-linking agent, and polymerization initiator, are described. These polymerizable compositions can be used to form silicone hydrogel contact lenses, and in methods of manufacturing silicone hydrogel contact lenses.
Abstract:
Methods for making ophthalmic lenses are generally discussed herein with particular discussions extended to plastic injection molded ophthalmic lens molds that are machined or lens buttons located on the injection molds that are machined. The machine process can include setting a lens axis of the ophthalmic lens and machining a ballast that is aligned to a major axis of a toric zone.
Abstract:
Miscible polymerizable compositions comprising at least one primary amine-containing methacrylate monomer, or at least one primary amine-containing methacrylamide monomer, in addition to 20-80 wt. % siloxane monomer, 20-80 wt. % hydrophilic monomer, cross-linking agent, and polymerization initiator, are described. These polymerizable compositions can be used to form silicone hydrogel contact lenses, and in methods of manufacturing silicone hydrogel contact lenses.
Abstract:
Method and apparatus for manufacturing a contact lens comprising: dispensing a plurality of separate portions (24) of a liquid composition onto a contact lens mold section (12, 16), each separate portion of the liquid composition having a volume of less than about 1000 nano-liters.
Abstract:
A method is provided for manufacturing ophthalmically-acceptable, distortion-free silicone hydrogel contact lenses without the use of volatile organic solvents in the manufacturing process. The contact lenses are extract with an extraction liquid comprising an aqueous solution of a non-volatile organic solvent, such as ethyl lactate.