Abstract:
The present invention generally relates to a system for preventing surges in turbine engines and/or rotating compressors. Furthermore, some embodiments comprise sensors for monitoring engine operating characteristics and detecting surge and pre-surge conditions. Some embodiments also include means for adjusting engine operation in response to sensor data. Still other embodiments relate to methods of preventing surges in turbine engines and/or rotating compressors.
Abstract:
Provided is a thermocouple transition body apparatus comprising: a transition body, having at least one recess; a positive electrical terminal; a negative electrical terminal; and, at least one cap; wherein the transition body, positive terminal, and negative terminal are configured to attach to conductors without the use of epoxy or crimping. The thermocouple transition body apparatus is able to withstand temperatures exceeding 500 degrees Fahrenheit.
Abstract:
Provided is a displacement sensor assembly which includes a cantilever beam, a reaction block, a strain sensor, and a temperature sensor. The cantilever beam is physically oriented such that the longitudinal axis of the cantilever beam is perpendicular to the direction of displacement. A first end of the cantilever beam is fixably mounted to a fixed reference and a first end of the reaction block is fixably mounted to a moving reference. A second end of the cantilever beam is joined to a second end of the reaction block. The strain sensor is mounted and calibrated to detect displacement between the fixed and moving reference by measuring strain on the second end of the cantilever beam, and the temperature sensor is mounted and calibrated to counteract the effect of thermal strain on the sensor assembly and a method of use therefore.
Abstract:
Provided is a thermocouple transition body apparatus comprising: a transition body, having at least one recess; a positive electrical terminal; a negative electrical terminal; and, at least one cap; wherein the transition body, positive terminal, and negative terminal are configured to attach to conductors without the use of epoxy or crimping. The thermocouple transition body apparatus is able to withstand temperatures exceeding 500 degrees Fahrenheit.
Abstract:
Provided is a thermocouple transition body apparatus comprising: a transition body, having at least one recess; a positive electrical terminal; a negative electrical terminal; and, at least one cap; wherein the transition body, positive terminal, and negative terminal are configured to attach to conductors without the use of epoxy or crimping. The thermocouple transition body apparatus is able to withstand temperatures exceeding 500 degrees Fahrenheit.
Abstract:
A Sagnac interferometer event sensing device is disclosed. The device includes first and second light sources respectively emitting first and second light beams at first and second, different wavelengths. The device includes an optical fiber path, a first portion along which only the first light beam travels, a second portion along which only the second light beam travels, and a third portion along which both the first and second light beams travel. The device includes a first detector at an end of the first portion of the optical path to receive the first light beam, and a second detector at an end of the second portion of the optical path to receive the second light beam. The device includes a first plurality of depolarizers disposed along the first portion of the optical fiber path, and a second plurality of depolarizers disposed along the second portion of the optical fiber path.
Abstract:
An apparatus is disclosed comprising a platform operable to support a human. The apparatus also includes at least one cable suspending the platform. The apparatus also includes an elongation sensor engaged with the at least one cable. The elongation sensor is operable to emit a signal in response to elongation of the at least one cable. A method of using the apparatus is also disclosed. The method includes the step of positioning the platform adjacent to one of a machine and a path along which the machine moves. The method also includes the step of detecting a mass on the platform by emitting the signal from the elongation sensor in response to elongation of the at least one cable. The method also includes the step of disengaging the machine in response to the detecting step.
Abstract:
A Sagnac interferometer event sensing device is disclosed herein. The device includes a first light source operable to emit a first light beam. The device also includes a second light source operable to emit a second light beam. The device also includes an optical fiber path including a first portion along which only the first light beam travels, a second portion along which only the second light beam from the second light source travels, and a third portion along which both of the first and second light beams travel. The device also includes a first detector disposed at an end of the first portion of the optical fiber path to receive the first light beam. The device also includes a second detector disposed at an end of the second portion of the optical fiber path to receive the second light beam. The device also includes a first plurality of depolarizers disposed along the first portion of the optical fiber path. The device also includes a second plurality of depolarizers disposed along the second portion of the optical fiber path. The first and second light beams are at first and second, different characteristic wavelengths.
Abstract:
A measurement device including a fastener for use in attaching a first member to a second member, in which the fastener has an aperture extending through a length of the fastener, and a first optical fiber located within the aperture, in which the first optical fiber includes at least one fiber Bragg grating sensor. At least a portion of the first optical fiber can be secured within the aperture. A first end of the first optical fiber can be connected to an associated first optical connector and a second end of the first optical fiber can be connected to an associated second optical connector.
Abstract:
A sensor apparatus includes a resilient member positioned near a rod member and a strain sensor operatively connected to the resilient member. The rod member includes an eccentric member, which causes the resilient member to deflect as the rod member rotates. The strain sensor measures the strain in the resilient member due to the deflections caused by the eccentric member. The amount of strain relates to a rotational position of the rod member.