Abstract:
An amplifier arrangement has an input transistor being connected between reference potential terminals by a current source and a current sink. An amplifier stage has an amplifier output coupled to a first connection node between the current sink and a first terminal of the input transistor by means of a feedback path, and an amplifier input connected to a second connection node between the current source and the second terminal of the input transistor. A level-shifting structure has a level-shifting element with one end connected to a reference connection, wherein the level-shifting element is adapted to perform a level-shifting of a potential at the second connection node with respect to a potential at the reference connection. The reference connection is coupled to one of the following: the amplifier output, the first connection node, a control terminal of the input transistor.
Abstract:
An electric amplifier circuit for amplifying an output signal of a microphone comprises a supply input terminal (V10) to apply a supply potential (VDDA) for operating the electric amplifier circuit and a differential amplifier (110) having a first input terminal (E110a) for applying the output signal of the microphone (20), a second input terminal (E110b) and an output terminal (A110) for outputting an amplified output signal (OUT) of the microphone (20). A feedback path (FP) is provided between the output terminal (A110) of the differential amplifier (110) and the second input terminal (E110b) of the differential amplifier (110). A charge supplying circuit (120) is coupled to the feedback path (FP) to supply an amount of the charge to the feedback path (FP) in dependence on the supply potential (VDDA). The amount of charge supplied to the feedback path may be dependent on a change of the supply potential (VDDA).
Abstract:
A delta-sigma modulator (10) comprises a modulator loop (11) and a code generator (12). The modulator loop (11) comprises a loop filter (18). The code generator (12) is configured to generate a generator signal (BS) that is realized as an extended Barker code. The code generator (12) comprises a generator output (23) that is coupled to the loop filter (18).
Abstract:
A micro-electro-mechanical system, MEMS, microphone assembly comprises an enclosure defining a first cavity, and a MEMS microphone arranged inside the first cavity. The microphone comprises a first die with bonding structures and a MEMS diaphragm, and a second die having an application specific integrated circuit, ASIC. The second die is bonded to the bonding structures such that a gap is formed between a first side of the diaphragm and the second die, with the gap defining a second cavity. The first side of the diaphragm is interfacing with the second cavity and a second side of the diaphragm is interfacing with the environment via an acoustic inlet port of the enclosure. The bonding structures are arranged such that pressure ventilation openings are formed that connect the first cavity and the second cavity.
Abstract:
A signal processing arrangement has a signal input for connecting a capacitive sensor. An amplifier circuit is coupled between the signal input and a feedback point. A loop filter is coupled downstream to the feedback point. A quantizer is connected downstream to the loop filter and provides a multi-bit output word. The multi-bit output word consists of one or more higher significance bits and one or more lower significance bits. A first feedback path is coupled between a quantizer and the feedback point for providing a first feedback signal to the feedback point being representative of the one or more lower significance bits. A second feedback path is coupled to the quantizer for providing a second feedback signal to the signal input being representative of the one or more higher significance bits.