Abstract:
An embodiment of the present invention provides a method, comprising using optimized neighbor graphs for low-power access point assisted fast wireless roaming by a wireless station (STA) operating in a wireless network.
Abstract:
A system, method and device may include triggering a direct connection setup based on one or more communication parameters communicated with a mobile device via a fixed device. It may be determined whether the mobile device is a peer. The quality of service with the mobile device via the fixed device may be compared with quality of service of a mobile device via a direct link. A channel for the direct link may be selected and information may be sent to the mobile device over the direct link via the channel.
Abstract:
A system, method and device may include triggering a direct connection setup based on one or more communication parameters communicated with a mobile device via a fixed device. It may be determined whether the mobile device is a peer. The quality of service with the mobile device via the fixed device may be compared with quality of service of a mobile device via a direct link. A channel for the direct link may be selected and information may be sent to the mobile device over the direct link via the channel.
Abstract:
A technique for allowing client-driven profile updates in a wireless network uses a shared character password and a shared image that is known by both a client device and a network server. In some embodiments, a random character table is generated by a client device and is used, along with the shared character password and shared image, to calculate a one-time password (OTP). The OTP is then used to both encrypt and sign a new security profile to be delivered to the network server in a profile update request. The server may then generate the same OTP using information within the request and the shared character password and shared image. The new profile may then be decrypted and validated within the server.
Abstract:
A technique for allowing client-driven profile updates in a wireless network uses a shared character password and a shared image that is known by both a client device and a network server. In some embodiments, a random character table is generated by a client device and is used, along with the shared character password and shared image, to calculate a one-time password (OTP). The OTP is then used to both encrypt and sign a new security profile to be delivered to the network server in a profile update request. The server may then generate the same OTP using information within the request and the shared character password and shared image. The new profile may then be decrypted and validated within the server.
Abstract:
Apparatuses and methods for security profile update are presented. In one embodiment, the method comprises determining the version of a security profile associated with a wireless client and determining whether a new security profile exists. The method includes calculating a one-time password based at least on a random character table and some image areas within an image. The method further includes generating an encrypted version of the new security profile by using a first part of the one-time password as an encryption key and sending to the wireless client a profile update request.
Abstract:
Apparatuses and methods for security profile update are presented. In one embodiment, the method comprises determining the version of a security profile associated with a wireless client and determining whether a new security profile exists. The method includes calculating a one-time password based at least on a random character table and some image areas within an image. The method further includes generating an encrypted version of the new security profile by using a first part of the one-time password as an encryption key and sending to the wireless client a profile update request.
Abstract:
Techniques are described that provide load balancing in wireless networks. For instance, a device (e.g., a first access point) may receive one or more current operational characteristics for each of one or more neighbor APs. Also, the first AP may determine a received signal strength for each of these neighbor AP(s). In turn, the first AP selects one or more reportable neighbor APs from these neighbor APs. Further, the first AP transmits a beacon. This beacon includes, for each reportable neighbor AP, the corresponding one or more current operational characteristics and the corresponding received signal strength.
Abstract:
Techniques are described that provide load balancing in wireless networks. For instance, a device (e.g., a first access point) may receive one or more current operational characteristics for each of one or more neighbor APs. Also, the first AP may determine a received signal strength for each of these neighbor AP(s). In turn, the first AP selects one or more reportable neighbor APs from these neighbor APs. Further, the first AP transmits a beacon. This beacon includes, for each reportable neighbor AP, the corresponding one or more current operational characteristics and the corresponding received signal strength.
Abstract:
A method to generate a pairwise master key for use in establishing a wireless connection is presented. In one embodiment, the method comprises determining a region in an image. The method further comprises generating the pairwise master key based at least on contents of the region in the image.