Abstract:
A method and apparatus for realizing human-machine interaction are disclosed in the embodiments of the present document, including: according to obtained rotation gesture trajectory information, determining a tangential direction of an initial movement trajectory of a rotation trajectory and rotation information; taking the obtained tangential direction as a drag direction, and calculating a drag distance according to obtained rotation information; and performing dragging on a touch screen according to the obtained drag direction and the obtained drag distance.
Abstract:
Disclosed are a display screen film and a preparation method therefor, and an energy saving method. The display screen film comprises an oriented carbon nanotube layer and a quartz glass layer, wherein the oriented carbon nanotube layer is located above the quartz glass layer, comprises an oriented growth carbon nanotube, and is configured to refract all incident light through the oriented growth carbon nanotube; the quartz glass layer is used for the carbon nanotube layer to grow orientately thereon, and is also used for absorbing the incident light so as to enable all the incident light to reach the oriented carbon nanotube layer.
Abstract:
The present disclosure discloses a heat dissipation mechanism of the mobile terminal and a mobile terminal having the heat dissipation mechanism. In certain embodiments, the heat dissipation mechanism includes: a shell defining at least one heat dissipation window and a moving part connected with the shell. The moving part is used for by a user to open or close the at least one heat dissipation window. The heat dissipation mechanism may be used to effectively reduce surface temperature of the mobile terminal while the mobile terminal is in operation. Such a dissipation mechanism of the mobile terminal is suitable for mobile terminals and meets the demand for relatively high power consumption, ultra-thinness and miniaturization of the mobile terminals.
Abstract:
Disclosed are a display screen film and a preparation method therefor, and an energy saving method. The display screen film comprises an oriented carbon nanotube layer and a quartz glass layer, wherein the oriented carbon nanotube layer is located above the quartz glass layer, comprises an oriented growth carbon nanotube, and is configured to refract all incident light through the oriented growth carbon nanotube; the quartz glass layer is used for the carbon nanotube layer to grow orientately thereon, and is also used for absorbing the incident light so as to enable all the incident light to reach the oriented carbon nanotube layer.