Abstract:
Embodiments of the invention are directed toward reversible/invertible and lossless, image data hiding that can imperceptibly hide data into digital images and can reconstruct the original image without any distortion after the hidden data have been extracted in various digital image formats including, but not limited to Joint Photographic Experts Group (JPEG). In particular, embodiments of the invention provide a lossless data hiding technique for JPEG images based on histogram pairs. that embeds data into the JPEG quantized 8×8 block DCT coefficients and achieves good performance in terms of peak signal-to-noise ratio (PSNR) versus payload through manipulating histogram pairs with optimum threshold and optimum region of the JPEG DCT coefficients. Furthermore, the invented technology is expected to be able to apply to the I-frame of Motion Picture Experts Group (MPEG) video for various applications including annotation, authentication, and forensics.
Abstract:
Methods and apparatus are provided for subjecting an original, pixel domain image to an Integer Wavelet Transform (IWT) to obtain a matrix of wavelet coefficients; selecting at least one bit plane between a least significant bit plane and a most significant bit plane of the matrix of wavelet coefficients; compressing the at least one selected bit plane to produce free space in the at least one selected bit plane; embedding hidden data in the free space of the at least one compressed bit plane; and subjecting the at least one embedded bit plane to an Inverse IWT to produce a marked pixel domain image. Methods and apparatus are also provided for reversing this process.
Abstract:
Methods and apparatus are provided for subjecting an original, pixel domain image to an Integer Wavelet Transform (IWT) to obtain a matrix of wavelet coefficients; selecting at least one bit plane between a least significant bit plane and a most significant bit plane of the matrix of wavelet coefficients; compressing the at least one selected bit plane to produce free space in the at least one selected bit plane; embedding hidden data in the free space of the at least one compressed bit plane; and subjecting the at least one embedded bit plane to an Inverse IWT to produce a marked pixel domain image. Methods and apparatus are also provided for reversing this process.
Abstract:
Computer graphics may be detected in digital images by extracting a first set of features from an input digital image, extracting a second set of features from a prediction-error image derived from the input digital image, and applying a classification algorithm to the first set of features and the second set of features to determine if the combined sets of features indicate that the input digital image corresponds to computer graphics.