摘要:
Nateglinide M-type crystals (main peaks in powder X-ray diffraction: 6.0°, 14.2°, 15.2°, 18.8° (2θ)) can be produced by dissolving nateglinide in a solvent in which nateglinide is highly soluble and then adding a solvent in which nateglinide is difficultly soluble.
摘要:
New nateglinide crystals, i.e. nateglinide A-type crystals (main peaks in powder X-ray diffraction: 4.4°, 5.2°, 15.7°, 18.5°(2θ)), M-type crystals (main peaks in powder X-ray diffraction: 6.0°, 14.2°, 15.2°, 18.8°(2θ)) and P-type crystals (main peaks in powder X-ray diffraction: 4.8°, 5.3°, 14.3°, 15.2°(2θ)), can be produced by dissolving nateglinide in a solvent in which nateglinide is highly soluble and then adding a solvent in which nateglinide is difficultly soluble or, alternatively, by dissolving nateglinide in a mixed solvent composed of a solvent in which nateglinide is highly soluble and another solvent in which it is difficultly soluble, cooling the nateglinide solution to form crystals, filtering the mixture and drying the crystals at a specified temperature.
摘要:
Nateglinide M-type crystals (main peaks in powder X-ray diffraction: 6.0°, 14.2°, 15.2°, 18.8° (2θ)) can be produced by dissolving nateglinide in a solvent in which nateglinide is highly soluble and then adding a solvent in which nateglinide is difficultly soluble.
摘要:
New nateglinide crystals, i. e. nateglinide A-type crystals (main peaks in powder X-ray diffraction: 4.4°, 5.2°, 15.7°, 18.5° (2θ)), M-type crystals (main peaks in powder X-ray diffraction: 6.0°, 14.2°, 15.2°, 18.8° (2θ)) and P-type crystals (main peaks in powder X-ray diffraction: 4.8°, 5.3°, 14.3°, 15.2° (2θ)), can be produced by dissolving nateglinide in a solvent in which nateglinide is highly soluble and then adding a solvent in which nateglinide is difficultly soluble or, alternatively, by dissolving nateglinide in a mixed solvent composed of a solvent in which nateglinide is highly soluble and another solvent in which it is difficultly soluble, cooling the nateglinide solution to form crystals, filtering the mixture and drying the crystals at a specified temperature.
摘要:
Nateglinide M-type crystals (main peaks in powder X-ray diffraction: 6.0°, 14.2°, 15.2°, 18.8° (2θ)) can be produced by dissolving nateglinide in a solvent in which nateglinide is highly soluble and then adding a solvent in which nateglinide is difficultly soluble.
摘要:
New nateglinide crystals, i.e. nateglinide A-type crystals (main peaks in powder X-ray diffraction: 4.4°, 5.2°, 15.7°, 18.5°(2θ)), M-type crystals (main peaks in powder X-ray diffraction: 6.0°, 14.2°, 15.2°, 18.8°(2θ)) and P-type crystals (main peaks in powder X-ray diffraction: 4.8°, 5.3°, 14.3°, 15.2°(2θ)), can be produced by dissolving nateglinide in a solvent in which nateglinide is highly soluble and then adding a solvent in which nateglinide is difficultly soluble or, alternatively, by dissolving nateglinide in a mixed solvent composed of a solvent in which nateglinide is highly soluble and another solvent in which it is difficultly soluble, cooling the nateglinide solution to form crystals, filtering the mixture and drying the crystals at a specified temperature.
摘要:
Stable crystals of N-(trans-4-isopropylcyclohexylcarbonyl)-D-phenylalanine may be produced by treating this compound with a solvent at a temperature of at least 10.degree. C. and forming crystals in the solvent at a temperature of at least 10.degree. C. For example, crystals may be formed by crystallization out of solution, or may be formed from solid particles of the compound suspended in a solvent. Crystals formed in this way have different melting point, infra red spectrum and X-ray diffraction patterns from previously known forms of the compound and have enhanced processability, eg. stability to grinding.
摘要:
Stable crystals of N-(trans-4-isopropylcyclohexylcarbonyl)-D-phenylalanine may be produced by treating this compound with a solvent at a temperature of at least 10.degree. C. and forming crystals in the solvent at a temperature of at least 10.degree. C. For example, crystals may be formed by crystallization out of solution, or may be formed from solid particles of the compound suspended in a solvent. Crystals formed in this way have different melting point, infra red spectrum and X-ray diffraction patterns from previously known forms of the compound and have enhanced processability, e.g., stability to grinding.
摘要:
The present invention provides a glucose decomposition-suppressed solid preparation for dialysis among powdery or granular preparations for dialysis containing acetate-free solid organic acids as pH adjusting agents. The present invention provides the solid preparation for dialysis containing electrolytes, glucose and pH adjusting agents characterized in that solid organic acids containing reduced amount of microparticles are used, and more specifically, characterized in that solid organic acids whose 20 or less percent of particles are 250 μm or less in diameter, or solid organic acids whose 10 or less percent of particles are 150 μm or less in diameter, are used. Preferably, the solid organic acid contained therein is citric acid.
摘要:
There is provided a method for producing easily highly-purified acylphenylalanine that is useful as a raw material of pharmaceutical products and the like, which comprises the step of reacting an acid chloride with phenylalanine in a mixed solvent of an organic solvent and water, while keeping the solvent under the alkali condition by using potassium hydroxide.