Abstract:
A lever-fitting type connector includes a lever configured to linearly perform a relative movement with respect to a terminal accommodation member when lever operational force in a straight direction is input, a first guide mechanism configured to convert lever input acting along a lever operation direction that is exerted from the lever on the terminal accommodation member, into force in a connector insertion-removal direction orthogonal to the lever operation direction, and to guide a relative movement between the terminal accommodation member and the lever while performing conversion of a direction of the force, and a second guide mechanism that is a screw mechanism that can exert axial force acting along the lever operation direction, on the lever, and is configured to relatively move the lever with respect to the electrically-connected target object while guiding in the lever operation direction.
Abstract:
A connector includes connector terminals having an elastically deformable contact portion which contacts an apparatus-terminal of a connection counterpart apparatus, a housing to which the connector terminals are assembled, a rotating member which is rotatable with respect to the housing by an external manipulation, and a movable member which moves the housing toward the connection counterpart apparatus via a motion direction converting mechanism which converts a rotation motion of the rotating member into a linear motion. The motion direction converting mechanism includes at least one projection in one of the housing and the movable member and at least one linear groove which meshes with the projection in the other one of the housing and the movable member, wherein the projection and the linear groove are inclined with respect to a moving direction of the housing.
Abstract:
A surge voltage reduction member includes a tubular magnetic body having a through-hole and at least one coil wire. The coil wire is inserted through the through-hole and has a winding portion which is winded around a portion of the magnetic body. The coil wire is formed by connecting a bent coil element wire and a straight coil element wire. Where the coil wire has two or more bent coil element wires, the winding portion is formed by connecting the through-hole passing portion of one of adjacent bent coil element wires to the outside passing portion of the other of the adjacent bent coil element wires and connecting the outside passing portion of the one of the adjacent bent coil element wires to the straight coil element wire.
Abstract:
A connector includes a female terminal having an elastically deformable contact portion; a housing; a rotary cylinder rotatably mounted to the housing; and a slider movably mounted in a cylinder axis direction via a motion direction converting mechanism, in which the motion direction converting mechanism is configured to move the slider from a first cylinder axis position to a second cylinder axis position when the rotary cylinder is rotated from a first rotation position to a second rotation position, the slider is formed to be separated from a contact portion at the first cylinder axis position and press the contact portion at the second cylinder axis position, and the contact portion of the female terminal is formed to come into pressing contact with the male terminal by being pressed by the slider.
Abstract:
A lever-fitting type connector includes a lever configured to linearly perform a relative movement with respect to a terminal accommodation member when lever operational force in a straight direction is input, a first guide mechanism configured to convert lever input acting along a lever operation direction that is exerted from the lever on the terminal accommodation member, into force in a connector insertion-removal direction orthogonal to the lever operation direction, and to guide a relative movement between the terminal accommodation member and the lever while performing conversion of a direction of the force, and a second guide mechanism that is a screw mechanism that can exert axial force acting along the lever operation direction, on the lever, and is configured to relatively move the lever with respect to the electrically-connected target object while guiding in the lever operation direction.
Abstract:
A connector includes connector terminals having elastically deformable contact portions to be contacted with device terminals of a connection counterpart side device, a housing to which the connector terminals are assembled, a rotary member that is rotatable with respect to the housing, and a motion direction conversion mechanism that converts a rotary motion of the rotary member to a linear motion to move the housing in a direction of a rotation axis of the rotary member and brings the contact portions in pressure contact with the device terminals. As the motion direction conversion mechanism, at least one protrusion is formed on one of an outer peripheral surface of a cylindrical portion of the housing and the rotary member and at least one helical groove engaging with the protrusion is formed on the other thereof.
Abstract:
A second connector housing connected to a first connector housing includes: a second housing body (31) including a cylinder portion (312) into which a body portion (212) is fitted; an axial groove (315a) formed by a cut in the cylinder portion (312) and allowing a connection pin (214) to enter therein, a circumferential groove (315b) arranged to extend circumferentially in the cylinder portion (312) from a distal end of the axial groove (315a), and allowing the connection pin (214) to move therein when the connector housings are operated and rotated relatively to each other; and a lock spring piece (316) formed integrally with the cylinder portion (312) to extend along the circumferential groove (315b), and restricting the connection pin (214) from moving in a return direction in a state in which the connection piece (214) arrives at distal end of the circumferential groove (315b).
Abstract:
A connector includes connector terminals having an elastically deformable contact portion which contacts an apparatus-terminal of a connection counterpart apparatus, a housing to which the connector terminals are assembled, a rotating member which is rotatable with respect to the housing by an external manipulation, and a movable member which moves the housing toward the connection counterpart apparatus via a motion direction converting mechanism which converts a rotation motion of the rotating member into a linear motion. The motion direction converting mechanism includes at least one projection in one of the housing and the movable member and at least one linear groove which meshes with the projection in the other one of the housing and the movable member, wherein the projection and the linear groove are inclined with respect to a moving direction of the housing.
Abstract:
A second terminal fitting which abuts and is connected to a first terminal fitting includes a second annular portion formed at the tip end of a second terminal body which extends on a center axis thereof, a plurality of contact surfaces which protrude from the outer periphery of the second annular portion at the same intervals as those of a plurality of contact protrusions in the first terminal fitting, and a plurality of contact release portions which are positioned between the adjacent contact surfaces.
Abstract:
A connector includes connector terminals having elastically deformable contact portions to be contacted with device terminals of a connection counterpart side device, a housing to which the connector terminals are assembled, a rotary member that is rotatable with respect to the housing, and a motion direction conversion mechanism that converts a rotary motion of the rotary member to a linear motion to move the housing in a direction of a rotation axis of the rotary member and brings the contact portions in pressure contact with the device terminals. As the motion direction conversion mechanism, at least one protrusion is formed on one of an outer peripheral surface of a cylindrical portion of the housing and the rotary member and at least one helical groove engaging with the protrusion is formed on the other thereof.