Abstract:
The developing device includes a developer charging member configured to charge a toner serving as a one developer; and a developer bearing member configured to bear and feed the charged toner while forming an electric field so that the toner hops. The developer bearing member includes an insulating substrate; plural electrodes arranged on the insulating substrate in a developer feeding direction to form the electric field; and an outermost layer covering the plural electrodes. The toner has a softening point of from 115 to 130° C.
Abstract:
The developing device includes a developer charging member configured to charge a toner serving as a one developer; and a developer bearing member configured to bear and feed the charged toner while forming an electric field so that the toner hops. The developer bearing member includes an insulating substrate; plural electrodes arranged on the insulating substrate in a developer feeding direction to form the electric field; and an outermost layer covering the plural electrodes. The toner has a softening point of from 115 to 130° C.
Abstract:
A toner bearing member is provided which includes a conductive support, an insulation layer provided on the conductive support, multiple electrodes arranged at regular intervals on the insulation layer, a surface layer covering the multiple electrodes, comprising a polymerized compound having a specific unit, and a voltage applicator that applies a voltage between the conductive support and the multiple electrodes while periodically reversing an electric field generated therebetween.
Abstract:
A layer forming apparatus includes a loading unit including a stage onto which powder is supplied, a rotator that flattens the powder on the stage to form a powder layer, and circuitry. The circuitry causes the rotator to move in a first direction parallel to a surface of the stage and rotate while contacting the powder on the stage to form the powder layer. Further, the circuitry causes the rotator to move in a second direction opposite to the first direction and rotate while contacting surplus powder not on the stage.
Abstract:
A powder material for three-dimensional modeling includes a base particle and a resin including a first water soluble resin and a second water soluble resin, wherein a first aqueous solution of the first water soluble resin having a concentration of two percent by mass has a thermally reversible sol-gel phase transition and is gelated at temperatures higher than a first phase transition temperature of the first aqueous solution.
Abstract:
The present invention provides a latent electrostatic image bearing member which includes a support, a charge generating layer, and a charge transporting layer, the charge generating layer and the charge transporting layer being arranged in this order on or above the support, wherein the charge transporting layer comprises at least a charge transporting material and a binder resin and has a thickness of 30 μm to 50 μm; and the distribution representing the relation between the absorbance ratio of the charge transporting material and the binder resin measured by infrared spectroscopy and the distance from the surface of the charge transporting layer toward the thickness direction thereof represents a generally linear shape without having inflection points within 20 μm from the surface of the charge transporting layer toward the thickness thereof.
Abstract:
An image processing member that is included in an image forming apparatus employing method of evaluating and determining adhesion forces thereof, includes an optical writing unit configured to optically write an image, and an image processing member configured to process the image formed by the optical writing unit. The image processing member has good cleaning performance, which is determined by a method of determining a distribution of adhesion forces generated between a surface of the image processing member and a particle of a powder used to reproduce the image in the image forming apparatus in which the adhesion forces are measured at multiple points on the surface of the image processing member.
Abstract:
A lamination fabricating method includes forming a powder layer including a powder for three-dimensional fabrication, applying a fabrication liquid to the powder layer, repeating the forming of the powder layer and the forming the powder layer to form a fabricated object, and forming a base layer prior to the forming of the powder layer. A powder filling rate of the base layer is higher than a powder filling rate of the powder layer.
Abstract:
A powder material for three-dimensional modeling includes a base particle and a coverage film including an organic material. The coverage film covers the base particle. The powder material is used for three dimensional modeling and when the coverage film is dissolved in a solvent to prepare a solution and the solution is formed into a coated film on a smooth surface, the coated film has a wetting tension of from 22 mN/m to 28 mN/m.
Abstract:
A powder for 3D modeling includes a base particle and a resin having a functional group represented by the following Chemical formula 1, where A1 represents O or NH and R1, R2, and R3 each, independently represent CH3, C2H5, C3H7, or C4H9. The base particle is covered with the resin.