摘要:
In a method of manufacturing a target structure for use in a photoconductive image pickup tube when depositing a P-type photoconductive film on an N-type transparent conductive film deposited on one side of a transparent substrate which acts as an incident window of the image pickup tube, the P-type photoconductive film is made up of first and second photoconductive substances. The commencement of the deposition of the first photoconductive substance is delayed a predetermined time than that of the second photoconductive substance and the deposition of the first photoconductive substance is terminated before completion of the deposition of the second photoconductive material thereby forming a layer of the first photoconductive substance not contiguous to the junction between the N-type transparent conductive film and the P-type photoconductive film and having a predetermined thickness.
摘要:
A photoconductive device having a photoconductive layer which includes an amorphous semiconductor layer capable of charge multiplication in at least a part thereof is disclosed. The method of operating such a photoconductive device is also disclosed. By using the avalanche effect of the amorphous semiconductor layer, it is possible to realize a highly sensitive photoconductive device while maintaining low lag property. In one aspect of the present invention, the amorphous semiconductor layer is amorphous Se. In another aspect of the present invention, the amorphous semiconductor layer is composed mainly of tetrahedral elements including at least an element of hydrogen or halogens. When using the amorphous semiconductor layer composed mainly of tetrahedral elements, the charge multiplication effect is produced mainly in the interior of the amorphous semiconductor, and thus it is possible to obtain a thermally stable photoconductive device having a high sensitivity while keeping a good photoresponse.
摘要:
A target of an image pickup tube, having a transparent substrate, a transparent conductive film, a p-type photoconductive film made mainly from amorphous Se, and an n-type conductive film capable of forming a rectifying contact at the interface with the p-type photoconductive film, using the rectifying contact as a reverse bias, characterized in that the p-type photoconductive film containing at least a region having more than 35%, and to 60% by weight of Te in the film thickness direction, and at least a region containing 0.005 to 5% by weight of at least a material capable of forming shallow levels in the amorphous Se in the film thickness direction, has good after-image characteristics even if operated at a high temperature.
摘要:
A photoconductive target having an electrode and a P-type conductive layer mainly made of Se and making rectifying contact at an interface with the electrode, with at least Te being doped in a portion of the P-type conductive layer. At least one metal fluoride forming shallow levels is doped in the region where the signal current is generated for the most part of the P-type conductive layer with an average concentration of not less than 50 ppm and not more than 5% by weight. The metal fluoride is preferably at least one selected from the group consisting of LiF, NaF, MgF.sub.2, CaF.sub.2, BaF.sub.2, AlF.sub.3, CrF.sub.3, MnF.sub.2, CoF.sub.2, PbF.sub.2, CeF.sub.3 and TlF. The high light sticking of the photoconductive target can thus be considerably reduced.
摘要:
In a target structure for use in a photoconductive image pickup tube, a P-type photoconductive film is deposited on an N-type transparent conductive film which is deposited on a transparent substrate. The P-type photosensitive film comprises first and second photoconductive substances. The commencement of the deposition of the first photoconductive substance is delayed a predetermined time from that of the second photoconductive substance thereby forming a film of the first photoconductive substance which is not contiguous to the junction surface between the N-type transparent conductive film and the P-type photoconductive film.
摘要:
A photoconductive device having a photoconductive layer which includes an amorphous semiconductor layer capable of charge multiplication in at least a part thereof is disclosed. The method of operating such a photoconductive device is also disclosed. By using the avalanche effect of the amorphous semiconductor layer, it is possible to realize a highly sensitive photoconductive device while maintaining low lag property.
摘要:
A photoconductive device having a photoconductive layer which includes an amorphous semiconductor layer capable of charge multiplication in at least a part thereof is disclosed. The method of operating such a photoconductive device is also disclosed. By using the avalanche effect of the amorphous semiconductor layer, it is possible to realize a highly sensitive photoconductive device while maintaining low lag property.
摘要:
A photoconductive image pick-up tube target comprising an N-type semiconductor film formed on a transparent substrate, and a P-type photoconductive film in rectifying contact with the N-type semiconductor film and containing Se and As and also Te as sensitizers. A layer of said P-type photoconductive film between the N-type semiconductor film and a Te-containing layer of the P-type photoconductive film has an As concentration distribution which is lower on the side of the N-type conductive film and higher on the side of the Te-containing layer.
摘要:
The target comprises a transparent substrate, an N-type transparent conductive film formed on the substrate, a P-type photoconductive film formed on the N-type conductive film and a heterojunction formed at the interface between the N- and P-type films. The P-type photoconductive film contains selenium, tellurium and arsenic of which selenium and arsenic are distributed continuously from the heterojunction throughout the thickness of the P-type photoconductive film whereas the distribution of tellurium is spaced from the heterojunction and localized in the vicinity of the heterojunction. The total amount of arsenic contained in the P-type photoconductive film ranges from 2.5 to 6% by weight.
摘要:
The target comprises a transparent substrate, an N-type transparent conductive film formed on the substrate, a P-type photoconductive film formed on the N-type conductive film and a heterojunction formed at the interface between the N- and P-type films. The P-type photoconductive film contains selenium, tellurium and arsenic of which selenium and arsenic are distributed continuously from the heterojunction throughout the thickness of the P-type photoconductive film whereas the distribution of tellurium is spaced from the heterojunction and localized in the vicinity of the heterojunction. The total amount of arsenic contained in the P-type photoconductive film ranges from 2.5 to 6% by weight.