Abstract:
Methods and systems are described for creating a custom index in a multi-tenant database environment. In one embodiment, a method includes obtaining query for a multi-tenant database that is recommended as a candidate for creating an additional filter, evaluating the query against criteria to determine whether to select the query for creating the additional filter, and creating the additional filter for the query, if the query is selected.
Abstract:
A portable spectral imaging microscope includes a probe head coupled via fiber optic cabling to a laser source and to a spectrograph. The probe head is coupled to a position controller that is mounted on a base suitable for positioning adjacent to a sample. The position controller has five degrees of freedom that permits one to adjust the position and direction of the probe head relative to the sample over a wide range of dimensions and angles. The entire probe head can be easily moved in order to precisely align the objective lens to stationary samples for simultaneous viewing and spectral analysis.
Abstract:
Methods and systems are described for creating a custom index in a multi-tenant database environment. In one embodiment, a method includes obtaining query for a multi-tenant database that is recommended as a candidate for creating an additional filter, evaluating the query against criteria to determine whether to select the query for creating the additional filter, and creating the additional filter for the query, if the query is selected.
Abstract:
A hand-held material identification apparatus 10 uses a spectrograph and detector array detecting a Raman spectrum produced by a sample illuminated by a laser source to recognize a variety of materials with a command to recognition time cycle of about one second or less. The width of the spectrum detected by each detector in the array is less than ¼th the excitation source wavelength deviation to permit smoothing of the spectrum detected by the discrete spectral elements to eliminate pixel noise without loss of Raman spectral information. The Raman spectra are produced by materials illuminated by an inexpensive near-infrared multimode laser operated in a pulse mode to deliver between 0.05 and 0.5 joules of photon energy, with the Raman spectra being detected before any significant heating of the sample occurs. The identification apparatus 10 qualitatively determines the chemical composition of reinforced and unreinforced copolymers and composites such as ABS, polypropylene, talc-filled polypropylene, polycarbonate, PMMA, polyethylene, and PVC, from samples of different colors and textures with a high degree of success without the need for special positioning or sample preparation.
Abstract:
A material identification apparatus 10 uses a spectrograph and detector array detecting a Raman spectrum produced by a sample illuminated by a laser source to recognize a variety of materials. The Raman spectra are produced by materials illuminated by an inexpensive near-infrared multimode laser operated in a pulse mode to deliver between 0.05 and 0.5 joules of photon energy, with the Raman spectra being detected before any significant heating of the sample occurs. The identification apparatus 10 qualitatively determines the chemical composition of reinforced and unreinforced copolymers and composites such as ABS, polypropylene, talc-filled polypropylene, polycarbonate, PMMA, PVB, polyethylene, and PVC, from samples of different colors, layers, and textures with a high degree of success without the need for special sample preparation.