Abstract:
Systems, methods, and apparatuses are disclosed for adaptively generating a summary of web-based content based on an attribute of a mobile communication device having transmitted a request for the web-based content. By adaptively generating the summary based on an attribute of the mobile communication device such as an amount of visual space available or a number of characters permitted in the interface, a display of the web-based content may be controlled on the mobile communication device in a way that was not previously available. This enables control of displaying web-based content that has been adaptively generated to be displayed on limited display screens based on a learned attribute of the mobile communication device requesting the web-based content.
Abstract:
Disclosed herein is an automated approach for summarizing media content using descriptive information associated with the media content. For example and without limitation, the descriptive information may comprise a title associated with the media content. One or more segments of the media content may be identified to form a media content summary based on each segment's respective similarity to the descriptive information, which respective similarity may be determined using a media content and auxiliary data feature spaces. A shared dictionary of canonical patterns generated using the media content and auxiliary data feature spaces may be used in determining a media content segment's similarity to the descriptive information.
Abstract:
The present teaching relates to generating user profiles with semantic knowledge. A first information associated with a user is obtained. One or more entities are identified from the first information. The one or more entities are augmented based on second information to generate a set of augmented entities. The set of augmented entities are clustered into a set of hierarchical clusters. A set of user profiles is generated based on the set of hierarchical clusters so that the user profile is to be used to personalize content recommendation.
Abstract:
Software for a website hosting short-text services creates an index of buckets for locality sensitive hashing (LSH). The software stores the index in an in-memory database of key-value pairs. The software creates, on a mobile device, a cache backed by the in-memory database. The software then uses a short text to create a query embedding. The software map the query embedding to corresponding buckets in the index and determines which of the corresponding buckets are nearest neighbors to the query embedding using a similarity measure. The software displays location types associated with each of the buckets that are nearest neighbors in a view in a graphical user interface (GUI) on the mobile device and receives a user selection as to one of the location types. Then the software displays the entities for the selected location type in a GUI view on the mobile device.
Abstract:
One or more computing devices, systems, and/or methods for entity disambiguation are provided. For example, a document may be analyzed to identify a first mention and a second mention. One or more techniques may be used to select and link a candidate entity, from a first set of candidate entities, to the first mention and select and link a candidate entity, from a second set of candidate entities, to the second mention.
Abstract:
One or more computing devices, systems, and/or methods for entity disambiguation are provided. For example, a document may be analyzed to identify a first mention and a second mention. One or more techniques may be used to select and link a candidate entity, from a first set of candidate entities, to the first mention and select and link a candidate entity, from a second set of candidate entities, to the second mention.
Abstract:
Software for a website hosting short-text services creates an index of buckets for locality sensitive hashing (LSH). The software stores the index in an in-memory database of key-value pairs. The software creates, on a mobile device, a cache backed by the in-memory database. The software then uses a short text to create a query embedding. The software map the query embedding to corresponding buckets in the index and determines which of the corresponding buckets are nearest neighbors to the query embedding using a similarity measure. The software displays location types associated with each of the buckets that are nearest neighbors in a view in a graphical user interface (GUI) on the mobile device and receives a user selection as to one of the location types. Then the software displays the entities for the selected location type in a GUI view on the mobile device.
Abstract:
Software on a website serves a user of an online content aggregation service a first article that the user views. The software extracts named entities from the first article using a named-entity recognizer. The named-entity recognizer uses a sequence of word embeddings as inputs to a conditional random field (CRF) tool to assign labels to each of the word embeddings. Each of the word embeddings is associated with a word in the first article and is trained using an entire topical article from a corpus of topical articles as a context for the word. The software then creates rankings for articles ingested by the content aggregation service based at least in part on the named entities and serves the user a second article using the rankings.
Abstract:
Disclosed are systems and methods for improving interactions with and between computers in content searching, generating, hosting and/or providing systems supported by or configured with personal computing devices, servers and/or platforms. The systems interact to identify and retrieve data within or across platforms, which can be used to improve the quality of data used in processing interactions between or among processors in such systems. The disclosed systems and methods provide systems and methods for automatic creation of a formatted, readable transcript of multimedia content, which is derived, extracted, determined, or otherwise identified from the multimedia content. The formatted, readable transcript can be utilized to increase accuracy and efficiency in search engine optimization, as well as identification of relevant digital content available for communication to a user.