RANKING ADVERTISEMENTS WITH PSEUDO-RELEVANCE FEEDBACK AND TRANSLATION MODELS
    1.
    发明申请
    RANKING ADVERTISEMENTS WITH PSEUDO-RELEVANCE FEEDBACK AND TRANSLATION MODELS 审中-公开
    使用PSEUDO-RELEVANCE反馈和翻译模型排列广告

    公开(公告)号:US20160350797A1

    公开(公告)日:2016-12-01

    申请号:US15231628

    申请日:2016-08-08

    Applicant: Yahoo! Inc.

    Inventor: Vanessa Murdock

    Abstract: Methods, computer products, and systems for selecting advertisements in response to an internet query are provided. The method provides for receiving an internet query that includes query terms, retrieving and then ranking a first set of advertisements in response to the internet query using a query likelihood model. The method then selects sampling terms using pseudo-relevance feedback and translation models, the internet query, and the first set of ad materials obtained using the query likelihood model. The sampling terms are chosen from a distribution of terms from the terms in the first set of ad materials, and the pseudo-relevance feedback model is used to select a term in the distribution of terms based on a probability. The use of translation models enhances the topicality of the results because the distribution words selected are related to the terms in the original query as indicated by their translation probabilities.

    Abstract translation: 提供了用于响应于互联网查询来选择广告的方法,计算机产品和系统。 该方法提供接收互联网查询,该互联网查询包括查询词,响应于使用查询似然模型的因特网查询来检索并排列第一组广告。 然后,该方法使用伪相关反馈和翻译模型,互联网查询以及使用查询似然模型获得的第一组广告材料来选择抽样项。 抽样条件从第一组广告材料中的术语的分布中选择,并且伪相关反馈模型用于基于概率来选择术语分配中的术语。 使用翻译模型增强了结果的主题性,因为所选择的分发词与原始查询中的术语相关,如其翻译概率所示。

Patent Agency Ranking