Abstract:
A technique of controlling a boiler system such as that used in a power generation plant includes using manipulated variables associated with or control inputs to a reheater section of the boiler system to control the operation of the furnace, and in particular to control the fuel/air mixture provided to the furnace or the fuel to feedwater ratio used in the furnace or boiler. In the case of a once-through boiler type of boiler system, using the burner tilt position, damper position or reheater spray amount to control the fuel/air mixture or the fuel to feedwater flow ratio of the system provides better unit operational efficiency.
Abstract:
A method of controlling a power generating unit or other process equipment with a slow reaction time includes creating a feedforward control signal to selectively include a fast response rate component or a slow response rate component based on the average rate at which a load demand set point signal has changed during a particular previous period of time. The method then uses the developed feedforward control signal to control the power generating equipment or other slowly reacting process equipment. In particular, a control method switches between introducing a fast or a slow response component within a feedforward control signal based on whether the change in the load demand set point over a particular period of time in the past (e.g., an average rate of change of the load demand set point signal) is greater than or less than a predetermined threshold. This method is capable of providing a relatively fast control action even if the expected load demand set point change is in a small range. In addition, this method does not require knowledge of the final or target load demand set point during the time in which the load demand set point is ramping up to a final target value and is not dependent on the ramp size, i.e., the ultimate difference between the load demand set point at the beginning of the load demand set point change and the final or target value of the load demand set point, making it more versatile than prior art systems.
Abstract:
A technique of controlling a boiler system such as that used in a power generation plant includes using manipulated variables associated with or control inputs to a reheater section of the boiler system to control the operation of the furnace, and in particular to control the fuel/air mixture provided to the furnace or the fuel to feedwater ratio used in the furnace or boiler. In the case of a once-through boiler type of boiler system, using the burner tilt position, damper position or reheater spray amount to control the fuel/air mixture or the fuel to feedwater flow ratio of the system provides better unit operational efficiency.
Abstract:
The disclosure is directed to a saturated water spraying system configured to rapidly respond to rapid load changes by implementing a single integrated DCS control block. The integrate DCS control block may include a plurality of process control routines that are necessary to control the operation of the spraying system. For example, upstream and downstream PID control routines may determine and output control variables, and other control routines may be provided as necessary to handle disturbances within a boiler affecting the outlet and spray steam temperatures, and to ensure that the steam temperatures do not fall into the saturation region during operation of the boiler. Because the routines are part of the same control block, the common storage for the control block may be accessed by each of the routines without the necessity of establishing additional communication links for transferring the information as is required when using cascaded function blocks.
Abstract:
A high fidelity distributed plant simulation technique includes a plurality of separate simulation modules that may be stored and executed separately in different computing devices. The simulation modules communicate directly with one another to perform accurate simulation of a plant, without requiring a centralized coordinator to coordinate the operation of the simulation system. In particular, numerous simulation modules are created, with each simulation module including a model of an associated plant element and being stored in different drops of a computer network to perform distributed simulation of a plant or a portion of a plant. At least some of the simulation modules, when executing, perform mass flow balances taking into account process variables associated with adjacent simulation modules to thereby assure pressure, temperature and flow balancing.
Abstract:
A process control system simulation technique performs real-time simulation of an actual process control network as that network is running within a process plant in a manner that is synchronized with the operation of the actual process control network. This real-time, synchronized simulation system includes a simulation process control network and a process model which are automatically updated periodically during the operation of the actual process control network to reflect changes made to the process control network, as well as to account for changes in the plant itself, i.e., changes which require an updated process model. The simulation system provides for more readily accessible and usable simulation activities, as the process control network and the process models used within the simulation system are synchronized with and up-to-date with respect to the current process operating conditions.
Abstract:
A high fidelity distributed plant simulation technique includes a plurality of separate simulation modules that may be stored and executed separately in different drops or computing devices. The simulation modules communicate directly with one another to perform accurate simulation of a plant, without requiring a centralized coordinator to coordinate the operation of the simulation system. In particular, numerous simulation modules are created, with each simulation module including a model of an associated plant element and these simulation modules are stored in different drops of a computer network to perform distributed simulation of a plant or a portion of a plant. At least some of the simulation modules, when executing, perform mass flow balances taking into account process variables associated with adjacent simulation modules to thereby assure pressure, temperature and flow balancing (i.e., conservation of mass flow) through the entire simulation system. In a dynamic situation, a transient mass storage relay technique is used to account for transient changes in mass flow through any non-storage devices being simulated by the simulation modules. Moreover, adjacent simulation modules located in different drops communicate directly with one another using a background processing task, which simplifies communications between adjacent simulation modules without the need for a central coordinator.
Abstract:
The present invention relates generally to process control systems and devices and, more particularly, to an apparatus for and a method of implementing redundant controller synchronization for bump-less failover during normal and mismatch conditions at the redundant controllers. The redundant controllers are configured to transmit state information of the process control areas of the primary controller to the backup controller that is necessary for synchronizing the redundant controllers but is not typically transmitted to other devices during the performance of process control functions. Synchronization messages are transmitted from the primary controller to the backup controller each time one of the control areas executes to perform process control functions. In other aspects, the redundant controllers are configured to determine state information at the backup controller from other process control network information during a failover of the primary controller where a mismatch condition exists between the control areas of the two controllers during the downloading of reconfigurations, and to initialize the backup controller at startup when the mismatch condition exists.
Abstract:
A process control system simulation technique performs real-time simulation of an actual process control network as that network is running within a process plant in a manner that is synchronized with the operation of the actual process control network. This real-time, synchronized simulation system includes a simulation process control network and a process model which are automatically updated periodically during the operation of the actual process control network to reflect changes made to the process control network, as well as to account for changes in the plant itself, i.e., changes which require an updated process model. The disclosed simulation system provides for more readily accessible and usable simulation activities, as the process control network and the process models used within the simulation system are synchronized with and up-to-date with respect to the current process operating conditions. Moreover, this simulation system is more accurate as it uses process models developed from the current state of the process whenever the simulation system beings to perform a simulation. Still further, the disclosed simulation system is easy to operate, as it uses the same user interface applications as the actual process control network and can be initialized and used at any time during operation the process plant without any significant configuration or set-up activities.
Abstract:
A system for analyzing the impact of operating soot blowers in a heat transfer section of a power plant determines a steam temperature influencing sequence and calculates a feed-forward signal to be applied to a steam temperature control system of the heat transfer section. The system operates a group of soot blowers for a number of times and collects quantitative data related to the steam temperature during and after each soot blowing operation. A computer program used by the system analyzes the quantitative data, generates a number of statistical parameters for evaluating the impact of operating the soot blowers according to a given sequence on the steam temperature, and determines whether the given sequence is a steam temperature influencing sequence. Consequently, the system determines a feed-forward signal based on the steam temperature influencing sequence and applies the feed-forward signal to a steam temperature control system used by the heat transfer section to compensate for any adverse impact of soot blowing.