摘要:
Shape memory alloy (SMA) actuating elements are commonly simpler and of lower mass than alternative actuator designs and may find particular application in the transportation industry. Such SMA-powered devices are usually reliable and long-lived but the phase transformations which occur in the SMA alloy and are responsible for its utility are not totally reversible. This irreversibility, a consequence of irrecoverable strain, may progressively degrade the long-term actuator performance as the irrecoverable strain accumulates over many operating cycles. Methods and devices for compensating for these effects and extending the useful cycle life of SMA actuators are described.
摘要:
Mechanical devices powered by Shape Memory Alloy (SMA) wires or other linear elements offer advantages in automotive applications. Such SMA-powered devices are commonly reliable and long-lived but have a finite lifetime. Measurements of the electrical resistivity of an SMA element during operation of the element may be related to the remaining lifetime of the element. Because operation of SMA elements is promoted by heating the element, usually by passage of an electric current, the resistivity measurements, and hence assessment of SMA element operation, may be made without interruption to the operation of the SMA-powered device and without addition of dedicated sensors.