Abstract:
A system and method enable similarity measures to be computed between pairs of images and between a color name and an image in a common feature space. Reference image representations are generated by embedding color name descriptors for each reference image in the common feature space. Color name representations for different color names are generated by embedding synthesized color name descriptors in the common feature space. For a query including a color name, a similarity is computed between its color name representation and one or more of the reference image representations. For a query which includes a query image, a similarity is computed between a representation of the query image and one or more of reference image representations. The method also enables combined queries which include both a query image and a color name to be performed. One or more retrieved reference images, or information based thereon, is then output.
Abstract:
A system and method enable semantic comparisons to be made between word images and concepts. Training word images and their concept labels are used to learn parameters of a neural network for embedding word images and concepts in a semantic subspace in which comparisons can be made between word images and concepts without the need for transcribing the text content of the word image. The training of the neural network aims to minimize a ranking loss over the training set where non relevant concepts for an image which are ranked more highly than relevant ones penalize the ranking loss.
Abstract:
A method for generating an image representation includes generating a set of embedded descriptors, comprising, for each of a set of patches of an image, extracting a patch descriptor which is representative of the pixels in the patch and embedding the patch descriptor in a multidimensional space to form an embedded descriptor. An image representation is generated by aggregating the set of embedded descriptors. In the aggregation, each descriptor is weighted with a respective weight in a set of weights, the set of weights being computed based on the patch descriptors for the image. Information based on the image representation is output. At least one of the extracting of the patch descriptors, embedding the patch descriptors, and generating the image representation is performed with a computer processor.
Abstract:
A method, a system, and a computer program product for extracting one or more images from a storage medium. A search model is selected based on the availability of a semantically related aesthetic model. A search model includes a generic aesthetic model if the semantically related aesthetic model for query is not available. A semantic score and an aesthetic score are computed based on the selected search model. The images are further ranked based on the semantic and aesthetic score.
Abstract:
Authentication methods are disclosed for determining whether a person or object to be authenticated is a member of a set of authorized persons or objects. A query signature is acquired comprising a vector whose elements store values of an ordered set of features for the person or object to be authenticated. The query signature is compared with an aggregate signature comprising a vector whose elements store values of the ordered set of features for the set of authorized persons or objects. The individual signatures for the authorized persons or objects are not stored; only the aggregate signature. It is determined whether the person or object to be authenticated is a member of the set of authorized persons or objects based on the comparison. The comparing may comprise computing an inner product of the query signature and the aggregate signature, with the determining being based on the inner product.
Abstract:
A method for generating an image representation includes generating a set of embedded descriptors, comprising, for each of a set of patches of an image, extracting a patch descriptor which is representative of the pixels in the patch and embedding the patch descriptor in a multidimensional space to form an embedded descriptor. An image representation is generated by aggregating the set of embedded descriptors. In the aggregation, each descriptor is weighted with a respective weight in a set of weights, the set of weights being computed based on the patch descriptors for the image. Information based on the image representation is output. At least one of the extracting of the patch descriptors, embedding the patch descriptors, and generating the image representation is performed with a computer processor.
Abstract:
A method for generating a system for predicting saliency in an image and method of use of the prediction system are described. Attention maps for each of a set of training images are used to train the system. The training includes passing the training images though a neural network and optimizing an objective function over the training set which is based on a distance measure computed between a first probability distribution computed for a saliency map output by the neural network and a second probability distribution computed for the attention map for the respective training image. The trained neural network is suited to generation of saliency maps for new images.
Abstract:
A method for generating a system for predicting saliency in an image and method of use of the prediction system are described. Attention maps for each of a set of training images are used to train the system. The training includes passing the training images though a neural network and optimizing an objective function over the training set which is based on a distance measure computed between a first probability distribution computed for a saliency map output by the neural network and a second probability distribution computed for the attention map for the respective training image. The trained neural network is suited to generation of saliency maps for new images.
Abstract:
A system and method enable similarity measures to be computed between pairs of images and between a color name and an image in a common feature space. Reference image representations are generated by embedding color name descriptors for each reference image in the common feature space. Color name representations for different color names are generated by embedding synthesized color name descriptors in the common feature space. For a query including a color name, a similarity is computed between its color name representation and one or more of the reference image representations. For a query which includes a query image, a similarity is computed between a representation of the query image and one or more of reference image representations. The method also enables combined queries which include both a query image and a color name to be performed. One or more retrieved reference images, or information based thereon, is then output.
Abstract:
Authentication methods are disclosed for determining whether a person or object to be authenticated is a member of a set of authorized persons or objects. A query signature is acquired comprising a vector whose elements store values of an ordered set of features for the person or object to be authenticated. The query signature is compared with an aggregate signature comprising a vector whose elements store values of the ordered set of features for the set of authorized persons or objects. The individual signatures for the authorized persons or objects are not stored; only the aggregate signature. It is determined whether the person or object to be authenticated is a member of the set of authorized persons or objects based on the comparison. The comparing may comprise computing an inner product of the query signature and the aggregate signature, with the determining being based on the inner product.