Abstract:
What is disclosed is an image path that advantageously uses halftone classification to select appropriate mappings in gray-scale management and color management operations. The tags generated in the scanner help identify different classes of halftones. One is selected from several pixel-value mappings to provide proper compensation. That is, the one-dimensional and multi-dimensional pixel-value mappings within the color management module are selected based on halftone classification tags from the scanner. The tagging is either one bit that indicates nullLow Frequency Halftonenull and nullNot LFHTnull, or, more preferably, the tag is multi-bit indicating a frequency bin that contains the frequency of the input halftone. Additionally, the multi-bit tag can indicate particular halftone screen types, such as dot screens, line screens, stochastic screens or error diffusion. The pixel value mappings are typically implemented as Look-Up Tables (LUTs), and the LUTs of the present invention are optimized for the various halftone classes. Generation of the LUTs, or other pixel-value mappings, is non-trivial in that such mappings are normally applied to contone images and not to blurred halftoned images. The pixel-value mappings of the present invention are derived via an iterative process. Alternatively, a model for this modulated image type is used.