摘要:
A system and method of communicating efficiently and reliably between a sensor unit and a master unit, especially in a wireless system, is provided. The disclosed techniques require only minimal processing by the sensor unit for communications purposes and as such, the described system and method can be implemented in systems with tight constraints on the sensor unit side in terms of required memory, power consumption, and cost, such as in wearable sensor systems.
摘要:
In an embodiment, a method and system are provided for determining a pedestrian position via dead reckoning on a portable device carried by the pedestrian (or “user”). The device has at least a processor, a 3D accelerometer, and a 3D gyroscope. The 3D accelerometer, and a 3D gyroscope are sampled to calculate device orientation, and then 3D accelerometer samples are gathered during a sensor time frame and an average step frequency is calculated. The user's speed and direction of movement are estimated and a device velocity is calculated relative to a prior device velocity via dead-reckoning. The estimated device velocity is corrected for drift and the pedestrian position is calculated based on the corrected estimated current device velocity.
摘要:
In an embodiment, a method and system are provided for determining a pedestrian position via dead reckoning on a portable device carried by the pedestrian (or “user”). The device has at least a processor, a 3D accelerometer, and a 3D gyroscope. The 3D accelerometer, and a 3D gyroscope are sampled to calculate device orientation, and then 3D accelerometer samples are gathered during a sensor time frame and an average step frequency is calculated. The user's speed and direction of movement are estimated and a device velocity is calculated relative to a prior device velocity via dead-reckoning. The estimated device velocity is corrected for drift and the pedestrian position is calculated based on the corrected estimated current device velocity.
摘要:
A system and method of communicating efficiently and reliably between a sensor unit and a master unit, especially in a wireless system, is provided. The disclosed techniques require only minimal processing by the sensor unit for communications purposes and as such, the described system and method can be implemented in systems with tight constraints on the sensor unit side in terms of required memory, power consumption, and cost, such as in wearable sensor systems.