摘要:
A liquid crystal display device comprises a liquid crystal display panel having liquid crystal cells which are defined by a gate line and a data line and which are arranged in a matrix type, an electrostatic discharge protection circuit mounted on the liquid crystal display panel and connected to any one of the gate line and the data line, a first voltage supply line supplying the same voltage as a first gate voltage with which the gate line is supplied to the electrostatic discharge protection circuit, and a second voltage supply line supplying the same voltage as a second gate voltage with which the gate line is supplied to the electrostatic discharge protection circuit.
摘要:
A liquid crystal display device for reducing power consumption is disclosed.In the liquid crystal display device, a liquid crystal display panel has liquid crystal cells which are defined by a gate line and a data line and which are arranged in a matrix type. An electrostatic discharge protection circuit is mounted on the liquid crystal display panel and is connected to any one of the gate line and the data line. A first voltage supply line supplies the same voltage as a first gate voltage with which the gate line is supplied to the electrostatic discharge protection circuit. And a second voltage supply line supplies the same voltage as a second gate voltage with which the gate line is supplied to the electrostatic discharge protection circuit.
摘要:
The present invention relates to an image sensor in which substrates are stacked, wherein a substrate-stacked image sensor according to the present invention is configured such that a first photodiode is formed on a first substrate, a second photodiode is formed on a second substrate, the two substrates are aligned with and bonded to each other to electrically couple the two photodiodes to each other, thereby forming a complete photodiode within one pixel.
摘要:
A separation type unit pixel of an image sensor, which can control light that incidents onto a photodiode at various angles, and be suitable for a zoom function in a compact camera module by securing an incident angle margin, and a manufacturing method thereof are provided. The unit pixel of an image sensor includes: a first wafer including a photodiode containing impurities having an impurity type opposite to that of a semiconductor material and a pad for transmitting photoelectric charge of the photodiode to outside; a second wafer including a pixel array region in which transistors except the photodiode are arranged regularly, a peripheral circuit region having an image sensor structure except the pixel array, and a pad for connecting pixels with one another; and a connecting means connecting the pad of the first wafer and the pad of the second wafer. Accordingly, manufacturing processes can be simplified by constructing the upper wafer using only a photodiode and the lower wafer using the pixel array region except the photodiode, and costs are reduced since transistors are not included in the upper wafer portion, which in turn cannot affect the interaction with light.
摘要:
Provided is a pixel for picking up an image signal capable of suppressing an occurrence of a cross-talk. The pixel for picking up an image signal includes a substrate surrounded by a trench, a photodiode, and a pass transistor. The photodiode is formed at an upper portion of the substrate and includes a P-type diffusion area and an N-type diffusion area which are joined with each other in a longitudinal direction. The pass transistor is formed at the upper portion of the substrate and includes the one terminal that is the joined P-type diffusion area and the N-type diffusion area, the other terminal that is a floating diffusion area, and a gate terminal disposed between the two terminals. The pixel for picking up an image signal is surrounded by the trench which penetrates the substrate from the upper portion to the lower portion of the substrate, and the trench is filled with an insulator.
摘要:
A liquid crystal display device includes gate and data lines on a first substrate, wherein the gate lines cross the data lines to define sub-pixels, thin film transistors adjacent to where the gate lines cross the data lines, pixel electrodes connected to the thin film transistors, common electrodes at left and right sides of the sub-pixels, wherein a first parasitic capacitance between a first data line arranged at the left side of a first sub-pixel and an adjacent first common electrode is smaller than a second parasitic capacitance between a second data line arranged at the right side of the first sub-pixel and an adjacent second common electrode, and a second substrate bonded to the first substrate with a layer of liquid crystal molecules there between.
摘要:
Provided is an optical image receiving device having a high and rapid sensitivity and a wide dynamic range manufacture in a CMOS process. The image receiving device includes a capacitor transistor for a special purpose in addition to a general structure of three transistors and a light receiving portion. The capacitor transistor has first and second source/drain ports connected to the capacitance node and the floating diffusion node, respectively, and is gated in response to activation of a predetermined capacitor control signal. In the CMOS optical image receiving device, the floating diffusion node is pumped over an external power voltage. Thus, the electronic potential of the floating diffusion node in the initialization state is much higher than the maximum voltage of the light receiving portion. Thus, the CMOS active pixel has a very high sensitivity in a region where the intensity of light is weak. Furthermore, since the sensitivity decreases in a region where the intensity of light is strong, the dynamic range thereof can be increased very large.
摘要:
Provided is a pixel for picking up an image signal capable of suppressing an occurrence of a cross-talk. The pixel for picking up an image signal includes a substrate surrounded by a trench, a photodiode, and a pass transistor. The photodiode is formed at an upper portion of the substrate and includes a P-type diffusion area and an N-type diffusion area which are joined with each other in a longitudinal direction. The pass transistor is formed at the upper portion of the substrate and includes the one terminal that is the joined P-type diffusion area and the N-type diffusion area, the other terminal that is a floating diffusion area, and a gate terminal disposed between the two terminals. The pixel for picking up an image signal is surrounded by the trench which penetrates the substrate from the upper portion to the lower portion of the substrate, and the trench is tilled with an insulator.
摘要:
A separation type unit pixel of an image sensor, which can control light that incidents onto a photodiode at various angles, and be suitable for a zoom function in a compact camera module by securing an incident angle margin, and a manufacturing method thereof are provided. The unit pixel of an image sensor includes: a first wafer including a photodiode containing impurities having an impurity type opposite to that of a semiconductor material and a pad for transmitting photoelectric charge of the photodiode to outside; a second wafer including a pixel array region in which transistors except the photodiode are arranged regularly, a peripheral circuit region having an image sensor structure except the pixel array, and a pad for connecting pixels with one another; and a connecting means connecting the pad of the first wafer and the pad of the second wafer.
摘要:
A liquid crystal display device includes a gate line formed on a substrate; first and second data lines crossing the gate line to form adjacent pixel regions in a direction of the gate line; pixel electrodes and common electrodes substantially parallel to each other and generating an in-plane electric field; a first pixel electrode line parallel to the first data line and spaced apart from the first data line by a first isolation distance; a second pixel electrode line spaced apart from the second data line by a second isolation distance; and a first common line parallel to the first data line and spaced apart from the first data line by a third isolation distance; a second common line spaced from the second data line by a fourth isolation distance, wherein the first isolation distance is shorter than the third isolation distance, and a parasitic capacitance between the first pixel electrode line and the first data line is greater than a parasitic capacitance between the second pixel electrode line and the second data line.