Abstract:
Disclosed in an electrophoretic display device having a charged ink layer. In this disclosed device, the ink layer is disposed on the active region (an image display region) and the peripheral region located around the active region, and an electric field is applied to a portion of the electrophoretic ink film corresponding to the peripheral region. Therefore, the peripheral region does not look stained.
Abstract:
Disclosed in an electrophoretic display device having a charged ink layer. In this disclosed device, the ink layer is disposed on the active region (an image display region) and the peripheral region located around the active region, and an electric field is applied to a portion of the electrophoretic ink film corresponding to the peripheral region. Therefore, the peripheral region does not look stained.
Abstract:
An organic light-emitting display includes a substrate, a thin film transistor on the substrate, an organic light-emitting diode electrically connected to the thin film transistor, and a photo sensor having a plurality of photo diodes connected to one another in parallel.
Abstract:
The present invention provides a cross-flow type drying apparatus for a pet, that is capable of quickly performing drying by blowing air uniformly on the entire body of a pet and simultaneously facilitating drying by reducing the amount of stress that a pet is subjected to. The cross-flow type drying apparatus includes: a main body case defining an outlet and an inlet and including a heating member installed within; a cross-flow fan installed in a longitudinal direction within the main body case to rotate; and a stand coupled to enable the main body case to pivot to a predetermined angle. This configuration can reduce drying time and easily perform drying the pet, and can lower manufacturing cost to reduce the financial burden placed on a user.
Abstract:
An organic light-emitting display device includes a substrate, a first buffer layer and a second buffer layer on the substrate, a thin film transistor on the second buffer layer, an organic light-emitting diode electrically connected with the thin film transistor, and a photo sensor with an intrinsic region on the second buffer layer, wherein the photo sensor is capable of absorbing red light from the organic light-emitting diode and of exhibiting quantum efficiency of from about 50% to about 90%.
Abstract:
An organic light-emitting display device includes a substrate, a first buffer layer and a second buffer layer on the substrate, a thin film transistor on the second buffer layer, an organic light-emitting diode electrically connected with the thin film transistor, and a photo sensor with an intrinsic region on the second buffer layer, wherein the photo sensor is capable of absorbing red light from the organic light-emitting diode and of exhibiting quantum efficiency of from about 50% to about 90%.
Abstract:
A liquid crystal display panel and a fabricating method thereof for reducing the number of data lines and the capacitance of a parasitic capacitor between pixel electrodes are disclosed. A first switching part has at least two thin film transistors for applying a first pixel signal that is supplied to a first data line to a first pixel electrode under control of the second control line and the gate line. A second switching part has at least two thin film transistors for applying a second pixel signal supplied to the second data line to the second pixel electrode under control of the first control line and the gate line. A turn-on current value of wither of the two thin film transistors, in each of the first and second switching parts, is more than that of the other thin film transistor.
Abstract:
A liquid crystal display panel and a fabricating method thereof for reducing the number of data lines and the capacitance of a parasitic capacitor between pixel electrodes are disclosed. A first switching part has at least two thin film transistors for applying a first pixel signal that is supplied to a first data line to a first pixel electrode under control of the second control line and the gate line. A second switching part has at least two thin film transistors for applying a second pixel signal supplied to the second data line to the second pixel electrode under control of the first control line and the gate line. A turn-on current value of wither of the two thin film transistors, in each of the first and second switching parts, is more than that of the other thin film transistor.
Abstract:
A transflective liquid crystal display includes an upper substrate having an upper alignment film, a lower substrate having a reflective part for reflecting a light and a transmissive part where light transmits through the lower substrate, a liquid crystal positioned between the upper substrate and the lower substrate, a reflective part alignment film on the lower substrate corresponding to the reflective part and a transmissive part alignment film on the lower substrate corresponding to the transmissive part.
Abstract:
An exposure method for an LCD is provided. In the method, a sub-pixel region of an array substrate is divided into a first exposure region and a second exposure region, and the first exposure region and the second exposure region are sequentially exposed.