Abstract:
A robotic system is provided for repeatedly and reproducibly applying a sealant to a seam in an assembled HVAC duct component. The applied sealant has a predetermined location on the assembled HVAC duct component to seal the seam. An assembled HVAC duct component is thus provided having a robot applied sealant on at least one seam in the assembled HVAC duct component, wherein the applied sealant has at least one of a predetermined location, thickness or coverage. The robotically applied sealant can be applied to a blank for forming the assembled HVAC duct component, wherein the sealant is located at locations forming a seam in the assembled HVAC duct component.
Abstract:
A robotic system is provided for repeatedly and reproducibly applying a sealant to a seam in an assembled HVAC duct component. The applied sealant has a predetermined location on the assembled HVAC duct component to seal the seam. An assembled HVAC duct component is thus provided having a robot applied sealant on at least one seam in the assembled HVAC duct component, wherein the applied sealant has at least one of a predetermined location, thickness or coverage. The robotically applied sealant can be applied to a blank for forming the assembled HVAC duct component, wherein the sealant is located at locations forming a seam in the assembled HVAC duct component.
Abstract:
An insulated HVAC duct component such as a transition box includes a first insulation layer and a second, different insulation layer. The transition box includes at least four sidewalls and one of a top and a back wall, the transition box further including a first access port and a second access port, the first access port having a different cross section than the second access port, one of the access ports being spaced from a nearest sidewall by less than 2 inches. The first insulation layer is located along an inside surface of the box. The second different insulation layer overlies the first insulation layer, the second different insulation layer having an air impervious surface, wherein the combined thickness of the first insulation layer and the second different insulation layer is less than 2 inches.
Abstract:
A container for a compressible article is disclosed, wherein the container includes first and second opposed sides having a first length, a first pair of flaps or edge attached to an end of the first and second opposed sides defining an end of the container, third and fourth opposed sides capable of having a second shorter length; and a second pair of flaps or edges attached to the third and fourth sides, the second pair of flaps having a fold line approximately aligned with the end of the container.
Abstract:
A drain pan assembly for receiving liquids from air conditioners, refrigerators, and freezers comprising a blank having peripheral edges, base forming fold lines, and corner piece forming fold lines, wherein at least two corner piece forming fold lines and a portion of the peripheral edges, form each corner piece. The corner piece further comprises a diagonal corner fold line. Folding each corner piece along each diagonal corner fold line forms corner flaps. Each corner flap is bent about each of the corner piece forming fold lines to dispose the corner piece forming fold lines adjacent to each other and the diagonal corner fold lines adjacent to a surface of each peripheral wall.
Abstract:
The present invention is directed to contryphan peptides having 6-12 amino acids, preferably including one or more D-tryptophan or D-leucine residues. The peptides of the present invention are generically termed "contryphans," although the D-leucine containing contryphans are sometimes referred to as leu-contryphans. More specifically, the present invention is directed to contryphan peptides having the general formula Xaa.sub.1 -Cys-Xaa.sub.2 -Xaa.sub.3 -Xaa.sub.4 -Pro-Xaa.sub.5 -Cys (SEQ ID NO:1), wherein Xaa.sub.1, is any amino acid or des-Xaa.sub.1, Xaa.sub.2 is Pro, 4-trans-hydroxyproline or Val, Xaa.sub.3 is D-Trp, L-Trp, D-Leu or L-Leu, preferably D-Trp or D-Leu, Xaa.sub.4 is any amino acid and Xaa.sub.5 is Trp or Tyr. When the peptide contains Xaa.sub.1, it is preferably Gly, Glu, or Lys, most preferably Gly. When Xaa.sub.3 is D- or L-Trp, Xaa.sub.2 is preferably Pro or 4-trans-hydroxyproline. When Xaa.sub.3 is D- or L-Leu, Xaa.sub.2 is preferably Val. The carboxy terminus may contain a carboxyl or an amide, preferably an amide. The present invention is further directed to the specific contryphan peptides and propeptides as described herein. The present invention is also directed to nucleic acids encoding the contryphan peptides and their propeptides as described herein. The contryphans of the present invention are useful as anticonvulsant or neuroprotective agents.
Abstract:
A rock crusher such as a cone or jaw crusher incorporates hardened tapered inserts in the manganese or other wear liner of at least one of its crushing elements. The inserts extend outwardly from the crushing surface of the crushing element towards the facing crushing surface so as, in use, to act as pick axes that shatter rock primarily by impact rather than pulverizing the rock by compression. The inserts are fixed in a heat treated manganese wear liner either by bonding or by press-fitting. The inserts substantially improve the life of the wear liner and, unexpectedly, 1) produce product of a highly uniform gradation in the desired ranges, 2) consistently produce product with a very high cubicity, 3) dramatically reduce the crusher's power requirements, and 4) significantly increase the crusher's capacity.
Abstract:
A container for a compressible article is disclosed, wherein the container includes first and second opposed sides having a first length, a first pair of flaps or edge attached to an end of the first and second opposed sides defining an end of the container, third and fourth opposed sides capable of having a second shorter length; and a second pair of flaps or edges attached to the third and fourth sides, the second pair of flaps having a fold line approximately aligned with the end of the container.
Abstract:
A method of retaining a longitudinally compressed flexible duct, the method includes disposing a strap about a closed flexible container enclosing a longitudinally compressed duct to circumferentially restrict a circumferential dimension of the flexible container and a corresponding circumferential dimension of the longitudinally compressed duct intermediate a first end of the longitudinally compressed duct and a second end of the longitudinally compressed duct. The method further includes opening an end of the flexible container to allow expansion of the longitudinally compressed duct intermediate the opened end of the flexible container and the strap.