Abstract:
A method and system provide a heat assisted magnetic recording (HAMR) disk drive including a media. The HAMR disk drive also includes a slider, at least one laser, at least one HAMR head on the slider and at least one electro-optical modulator (EOM) optically coupled with the laser(s) and coupled with the slider. The at least one laser and the at least one EOM are coupled to provide a modulated energy output. The at least one EOM controls the modulated energy output to have a characteristic waveform shape. The at least one HAMR head includes at least one waveguide, a write pole, and at least one coil for energizing the write pole. The at least one waveguide receives the modulated energy output and directs the modulated energy output toward the media.
Abstract:
Disclosed herein are embodiments of a heat-assisted magnetic recording (HAMR) device comprising a waveguide and a near-field transducer (NFT) coupled to the waveguide in a direct-fire configuration. The NFT comprises an insulator core encased in a metal portion. The insulator core comprises a rectangular portion and a tapered portion, wherein the rectangular portion is between the waveguide and the tapered portion. The metal portion comprises a plasmonic metal.
Abstract:
A heat-assisted magnetic recording (HAMR) medium has a heat-sink layer, a chemically-ordered FePt (or CoPt) alloy magnetic layer and a MgNiO intermediate layer between the heat-sink layer and the magnetic layer. The intermediate layer is a solid substitution crystalline alloy of the form (Mg(100-y)Niy)O, where y is less than 10 and greater than or equal to 0.5. The magnetic layer may be formed directly on the MgNiO intermediate layer, in which case the MgNiO intermediate layer functions as both a seed layer and a thermal barrier layer. The HAMR medium may also include an optional layer of crystalline “pure” MgO directly below or directly above the MgNiO intermediate layer. If the MgO layer is located directly above the MgNiO intermediate layer then the MgNiO intermediate layer functions primarily as a thermal barrier layer. The HAMR medium with the MgNiO intermediate layer provides a substantial improvement in corrosion resistance.
Abstract:
Disclosed herein are embodiments of a heat-assisted magnetic recording (HAMR) device comprising a waveguide and a near-field transducer (NFT) coupled to the waveguide. The NFT comprises a core layer comprising an insulator, a first metal layer adjacent to the core layer, and a second layer adjacent to the first metal layer, wherein the second layer comprises a material that is substantially mechanically and thermally stable and thereby functions as a hard jacket to mitigate deformation of the NFT. The first metal layer may comprise a plasmonic metal, such as gold. The second layer may comprise tungsten, chromium, or a dielectric material.