摘要:
A meat dewatering assembly (10) includes a support frame (12), a twin screw dewatering unit (14), a drive assembly (16) coupled with the unit (14), and a perforated housing (60). The unit (14) has a pair of tapered, non-parallel, intermeshed, helically flighted screws (52, 54) presenting nip clearances (59) between the fighting (55). The drive assembly (16) serves to counter-rotate the screws (52, 54). In use, emulsified meat is passed into the housing (60) during counter-rotation of the screws (52, 54), in order to compress the meat within the clearances (59) and thereby express water from the meat. Adjustment collars (38) permit selective size alteration of the nip clearances (59).
摘要:
High thermal transfer, hollow core extrusion screws (50, 52, 124, 126, 190) include elongated hollow core shafts (54, 128, 130, 192) equipped with helical fighting (56, 132, 134, 194) along the lengths thereof. The fighting (132, 134, 194) may also be of hollow construction which communicates with the hollow core shafts (54, 128, 130, 192). Structure (88, 90) is provided for delivery of heat exchange media (e.g., steam) into the hollow core shafts (54, 128, 130, 192) and the hollow fighting (132, 134, 194). The fighting (56, 132, 134, 194) also includes a forward, reverse pitch section (64, 162, 216). The extrusion screws (50, 52, 124, 126, 190) are designed to be used as complemental pairs as a part of twin screw processing devices (20), and are designed to impart high levels of thermal energy into materials being processed in the devices (20), without adding additional moisture.
摘要:
High thermal transfer, hollow core extrusion screws (50, 52, 124, 126, 190) include elongated hollow core shafts (54, 128, 130, 192) equipped with helical fighting (56, 132, 134, 194) along the lengths thereof. The fighting (132, 134, 194) may also be of hollow construction which communicates with the hollow core shafts (54, 128, 130, 192). Structure (88, 90) is provided for delivery of heat exchange media (e.g., steam) into the hollow core shafts (54, 128, 130, 192) and the hollow fighting (132, 134, 194). The fighting (56, 132, 134, 194) also includes a forward, reverse pitch section (64, 162, 216). The extrusion screws (50, 52, 124, 126, 190) are designed to be used as complemental pairs as a part of twin screw processing devices (20), and are designed to impart high levels of thermal energy into materials being processed in the devices (20), without adding additional moisture.
摘要:
High thermal transfer, hollow core extrusion screws (50, 52, 124, 126, 190) include elongated hollow core shafts (54, 128, 130, 192) equipped with helical fighting (56, 132, 134, 194) along the lengths thereof. The fighting (132, 134, 194) may also be of hollow construction which communicates with the hollow core shafts (54, 128, 130, 192). Structure (88, 90) is provided for delivery of heat exchange media (e.g., steam) into the hollow core shafts (54, 128, 130, 192) and the hollow fighting (132, 134, 194). The fighting (56, 132, 134, 194) also includes a forward, reverse pitch section (64, 162, 216). The extrusion screws (50, 52, 124, 126, 190) are designed to be used as complemental pairs as a part of twin screw processing devices (20), and are designed to impart high levels of thermal energy into materials being processed in the devices (20), without adding additional moisture.
摘要:
Food or feed processing systems (10, 96) include an extruder (14) and a downstream processor (16, 16a), and are operable to process high meat food or feed formulations. The processors (16, 16a) include an elongated processor barrel (38) presenting an inner surface (44) with a central body or tube (60) within the barrel (38) and presenting an outer surface (62). The surfaces (38, 62) thereby define an elongated annular processing region (70). The barrel (38) and tube (60) are steam heated by means of apparatus (52, 66). A rotatable processing element (72) is also located within the region (70). The element (72) has a plurality of helical vanes (88, 104), which scrape the surfaces (44, 62) to prevent buildup of material on these surfaces.
摘要:
Food or feed processing systems (10, 96) include an extruder (14) and a downstream processor (16, 16a), and are operable to process high meat food or feed formulations. The processors (16, 16a) include an elongated processor barrel (38) presenting an inner surface (44) with a central body or tube (60) within the barrel (38) and presenting an outer surface (62). The surfaces (38, 62) thereby define an elongated annular processing region (70). The barrel (38) and tube (60) are steam heated by means of apparatus (52, 66). A rotatable processing element (72) is also located within the region (70). The element (72) has a plurality of helical vanes (88, 104), which scrape the surfaces (44, 62) to prevent buildup of material on these surfaces.
摘要:
Extrusion processes for the production of retort-stable feed products comprise forming a mixture of feed ingredients and subjecting the mixture to specific mechanical energy (SME) and specific thermal energy (STE) inputs to achieve low SME/STE ratios, followed by retorting of the extruded products. The extrusion system (20) includes a preconditioner (22), extruder (24), and a two-stage drying assembly (26/28). The extruded products may be retorted directly from the extruder or after partial or complete drying thereof.
摘要:
Food or feed processing systems (10, 96) include an extruder (14) and a downstream processor (16, 16a), and are operable to process high meat food or feed formulations. The processors (16, 16a) include an elongated processor barrel (38) presenting an inner surface (44) with a central body or tube (60) within the barrel (38) and presenting an outer surface (62). The surfaces (38, 62) thereby define an elongated annular processing region (70). The barrel (38) and tube (60) are steam heated by means of apparatus (52, 66). A rotatable processing element (72) is also located within the region (70). The element (72) has a plurality of helical vanes (88, 104), which scrape the surfaces (44, 62) to prevent buildup of material on these surfaces.
摘要:
Apparatus and methods for food production including a food preconditioner (228) operable to heat and partially pre-cook food ingredients, and a twin screw extruder (20) operable to further cook the preconditioned ingredients to create final food products. The extruder (20) includes a pair of hollow core extrusion screws (50, 52, 124, 126, 190) having elongated hollow core shafts (54, 128, 130, 192) equipped with helical fighting (56, 132, 134, 194) along the lengths thereof. The fighting (132, 134, 194) is also of hollow construction which communicates with the hollow core shafts (54, 128, 130, 192). The flighting (56, 132, 134, 194) also includes forward, reverse pitch sections (64, 162, 216). The extrusion screws (50, 52, 124, 126, 190) are designed to impart high levels of thermal energy into materials being processed in the extruders (20), without adding additional moisture.
摘要:
High thermal transfer, hollow core extrusion screws (50, 52, 124, 126, 190) include elongated hollow core shafts (54, 128, 130, 192) equipped with helical fighting (56, 132, 134, 194) along the lengths thereof. The fighting (132, 134, 194) may also be of hollow construction which communicates with the hollow core shafts (54, 128, 130, 192). Structure (88, 90) is provided for delivery of heat exchange media (e.g., steam) into the hollow core shafts (54, 128, 130, 192) and the hollow fighting (132, 134, 194). The fighting (56, 132, 134, 194) also includes a forward, reverse pitch section (64, 162, 216). The extrusion screws (50, 52, 124, 126, 190) are designed to be used as complemental pairs as a part of twin screw processing devices (20), and are designed to impart high levels of thermal energy into materials being processed in the devices (20), without adding additional moisture.