Vehicle arrival prediction using multiple data sources including passenger bus arrival prediction
    1.
    发明授权
    Vehicle arrival prediction using multiple data sources including passenger bus arrival prediction 有权
    使用多个数据源的车辆到达预测,包括乘客客车到达预测

    公开(公告)号:US09177473B2

    公开(公告)日:2015-11-03

    申请号:US12831785

    申请日:2010-07-07

    IPC分类号: G08G1/123

    CPC分类号: G08G1/123

    摘要: A system, method and computer program product for estimating a vehicle arrival time. The system receives information representing prior travel times of vehicles between pre-determined vehicle stops along a vehicle route. The system receives real-time data representing a current journey. The current journey refers to a movement of a vehicle currently traveling along the route. The system calculates a regular trend representing the current journey based on the received prior travel times information and the received real-time data. The system computes a deviation from the regular trend in the current journey. The system determines a future traffic status in subsequent vehicle stops in the current journey. The system estimates, for the vehicle, each arrival time of each subsequent vehicle stop based on the calculated regular trend, the computed deviation and the determined future traffic status.

    摘要翻译: 一种用于估计车辆到达时间的系统,方法和计算机程序产品。 系统接收表示沿车辆路线的预定车辆停靠点之间的车辆的先前行驶时间的信息。 系统接收表示当前行程的实时数据。 目前的旅程是指当前沿着路线行驶的车辆的运动。 系统根据接收的先前行程时间信息和接收到的实时数据,计算表示当前行程的规则趋势。 该系统计算出与当前旅程中常规趋势的偏差。 该系统确定当前旅程中后续车站的未来交通状况。 系统估计,对于车辆,基于所计算的常规趋势,计算的偏差和确定的未来交通状况,每个后续车辆停止的每个到达时间。

    METHOD AND SYSTEM FOR FORECASTING USING AN ONLINE ANALYTICAL PROCESSING DATABASE
    2.
    发明申请
    METHOD AND SYSTEM FOR FORECASTING USING AN ONLINE ANALYTICAL PROCESSING DATABASE 有权
    使用在线分析处理数据库进行预测的方法和系统

    公开(公告)号:US20080243660A1

    公开(公告)日:2008-10-02

    申请号:US11693999

    申请日:2007-03-30

    IPC分类号: G06Q40/00

    CPC分类号: G06Q40/02 G06Q40/00

    摘要: A method (and system) for providing a forecast, the method including providing a multi-dimensional database storing data at a lowest level in a first dimension, calculating a first forecast at a level that is higher than the lowest level of a first dimension in the database, calculating a forecast for each category within the lowest level of the first dimension, aggregating a second forecast across all categories at the lowest level of the first dimension based upon an aggregation of the calculated forecasts for each category within the lowest level of the first dimension, determining a difference between the first forecast and the second forecast, and storing the difference in a dummy category at the lowest level of the first dimension.

    摘要翻译: 一种用于提供预测的方法(和系统),所述方法包括提供在第一维度中存储数据的多维数据库,计算高于第一维度中的最低级别的级别的第一预测 数据库,计算在第一维度的最低级别内的每个类别的预测,基于在所述第一维度的最低级别内的每个类别的所计算的预测的聚合来聚合所述第一维度的最低级别的所有类别的第二预测 第一维度,确定第一预测和第二预测之间的差异,以及将差值存储在第一维度的最低水平处。

    VEHICLE ARRIVAL PREDICTION USING MULTIPLE DATA SOURCES INCLUDING PASSENGER BUS ARRIVAL PREDICTION
    4.
    发明申请
    VEHICLE ARRIVAL PREDICTION USING MULTIPLE DATA SOURCES INCLUDING PASSENGER BUS ARRIVAL PREDICTION 有权
    使用多种数据来源的车辆抵达预测,包括乘客总线抵达预测

    公开(公告)号:US20120010803A1

    公开(公告)日:2012-01-12

    申请号:US12831785

    申请日:2010-07-07

    IPC分类号: G08G1/123 G06G7/70 G01S19/42

    CPC分类号: G08G1/123

    摘要: A system, method and computer program product for estimating a vehicle arrival time. The system receives information representing prior travel times of vehicles between pre-determined vehicle stops along a vehicle route. The system receives real-time data representing a current journey. The current journey refers to a movement of a vehicle currently traveling along the route. The system calculates a regular trend representing the current journey based on the received prior travel times information and the received real-time data. The system computes a deviation from the regular trend in the current journey. The system determines a future traffic status in subsequent vehicle stops in the current journey. The system estimates, for the vehicle, each arrival time of each subsequent vehicle stop based on the calculated regular trend, the computed deviation and the determined future traffic status.

    摘要翻译: 一种用于估计车辆到达时间的系统,方法和计算机程序产品。 系统接收表示沿车辆路线的预定车辆停靠点之间的车辆的先前行驶时间的信息。 系统接收表示当前行程的实时数据。 目前的旅程是指当前沿着路线行驶的车辆的运动。 系统根据接收的先前行程时间信息和接收到的实时数据,计算表示当前行程的规则趋势。 该系统计算出与当前旅程中常规趋势的偏差。 该系统确定当前旅程中后续车站的未来交通状况。 系统估计,对于车辆,基于所计算的常规趋势,计算的偏差和确定的未来交通状况,每个后续车辆停止的每个到达时间。

    METHOD AND STRUCTURE FOR VEHICULAR TRAFFIC PREDICTION WITH LINK INTERACTIONS AND MISSING REAL-TIME DATA
    5.
    发明申请
    METHOD AND STRUCTURE FOR VEHICULAR TRAFFIC PREDICTION WITH LINK INTERACTIONS AND MISSING REAL-TIME DATA 有权
    具有链路交互和丢失实时数据的车辆交通预测的方法和结构

    公开(公告)号:US20100063715A1

    公开(公告)日:2010-03-11

    申请号:US12619226

    申请日:2009-11-16

    IPC分类号: G08G1/00 G01C21/36

    摘要: A method and apparatus for predicting traffic on a transportation network where real time data points are missing. In one embodiment, the missing data is estimated using a calibration model comprised of historical data that can be periodically updated, from select links constituting a relationship vector. The missing data can be estimated off-line whereafter it can be used to predict traffic for at least a part of the network, the traffic prediction being calculated by using a deviation from a historical traffic on the network. The invention further discloses a method for in-vehicle navigation; and a method for traffic prediction for a single lane.

    摘要翻译: 一种用于预测实时数据点丢失的运输网络上的流量的方法和装置。 在一个实施例中,使用包括可以周期性更新的历史数据的校准模型,从构成关系向量的选择链路来估计丢失的数据。 丢失的数据可以离线估计,之后它可以用于预测网络的至少一部分的流量,通过使用与网络上的历史流量的偏差来计算流量预测。 本发明还公开了一种车载导航方法, 以及用于单个车道的交通预测的方法。

    Method and structure for vehicular traffic prediction with link interactions
    6.
    发明授权
    Method and structure for vehicular traffic prediction with link interactions 有权
    具有链路相互作用的车辆交通预测方法与结构

    公开(公告)号:US07953544B2

    公开(公告)日:2011-05-31

    申请号:US11626592

    申请日:2007-01-24

    CPC分类号: G08G1/0104

    摘要: A method and structure for predicting traffic on a network, includes a receiver which receives data related to traffic on at least a portion of a network. A calculator calculates a traffic prediction for at least a part of the network, the traffic prediction being calculated by using a deviation from a historical traffic on the network.

    摘要翻译: 一种用于预测网络上的业务的方法和结构,包括在网络的至少一部分上接收与业务有关的数据的接收机。 计算器计算网络的至少一部分的流量预测,通过使用与网络上的历史流量的偏差来计算流量预测。

    Method and structure for vehicular traffic prediction with link interactions and missing real-time data
    7.
    发明授权
    Method and structure for vehicular traffic prediction with link interactions and missing real-time data 有权
    具有链路交互和丢失实时数据的车辆交通预测的方法和结构

    公开(公告)号:US08755991B2

    公开(公告)日:2014-06-17

    申请号:US12619226

    申请日:2009-11-16

    摘要: A method and apparatus for predicting traffic on a transportation network where real time data points are missing. In one embodiment, the missing data is estimated using a calibration model comprised of historical data that can be periodically updated, from select links constituting a relationship vector. The missing data can be estimated off-line whereafter it can be used to predict traffic for at least a part of the network, the traffic prediction being calculated by using a deviation from a historical traffic on the network. The invention further discloses a method for in-vehicle navigation; and a method for traffic prediction for a single lane.

    摘要翻译: 一种用于预测实时数据点丢失的运输网络上的流量的方法和装置。 在一个实施例中,使用包括可以周期性更新的历史数据的校准模型,从构成关系向量的选择链路来估计丢失的数据。 丢失的数据可以离线估计,之后它可以用于预测网络的至少一部分的流量,通过使用与网络上的历史流量的偏差来计算流量预测。 本发明还公开了一种车载导航方法, 以及用于单个车道的交通预测的方法。

    METHOD AND STRUCTURE FOR VEHICULAR TRAFFIC PREDICTION WITH LINK INTERACTIONS
    8.
    发明申请
    METHOD AND STRUCTURE FOR VEHICULAR TRAFFIC PREDICTION WITH LINK INTERACTIONS 有权
    具有链路交互的车辆交通预测的方法和结构

    公开(公告)号:US20080175161A1

    公开(公告)日:2008-07-24

    申请号:US11626592

    申请日:2007-01-24

    IPC分类号: H04J1/16

    CPC分类号: G08G1/0104

    摘要: A method and structure for predicting traffic on a network, includes a receiver which receives data related to traffic on at least a portion of a network. A calculator calculates a traffic prediction for at least a part of the network, the traffic prediction being calculated by using a deviation from a historical traffic on the network.

    摘要翻译: 一种用于预测网络上的业务的方法和结构,包括在网络的至少一部分上接收与业务有关的数据的接收机。 计算器计算网络的至少一部分的流量预测,通过使用与网络上的历史流量的偏差来计算流量预测。

    PERIODIC REVENUE FORECASTING FOR MULTIPLE LEVELS OF AN ENTERPRISE USING DATA FROM MULTIPLE SOURCES
    9.
    发明申请
    PERIODIC REVENUE FORECASTING FOR MULTIPLE LEVELS OF AN ENTERPRISE USING DATA FROM MULTIPLE SOURCES 审中-公开
    使用多个来源的数据为企业的多个级别预测的定期收入

    公开(公告)号:US20080167942A1

    公开(公告)日:2008-07-10

    申请号:US11620678

    申请日:2007-01-07

    IPC分类号: G06Q10/00 G06F17/11

    CPC分类号: G06Q30/02 G06Q30/0202

    摘要: An embodiment of the present invention proposes to describe an enterprise or company in terms of its structure and represent that structure in performing revenue forecasts for the enterprise or company. Mapping the company structure in a multi-dimensional matrix, for example, can represent that structure. The revenue forecasting method is novel in that forecasts for any level of the enterprise or company make use of data and previous forecasts for that and other elements of the structure. In this way, the method improves upon existing methods by leveraging information contained in some data on other data, and learning the relations between them.

    摘要翻译: 本发明的一个实施例提出了在其结构方面描述企业或公司,并表示对企业或公司进行收入预测的结构。 例如,在多维矩阵中映射公司结构可以表示该结构。 收入预测方法是新颖的,因为任何级别的企业或公司的预测都会使用数据和以前的预测结果的其他要素。 以这种方式,该方法通过利用一些数据中包含的关于其他数据的信息,并学习它们之间的关系来改进现有方法。

    Most informative thresholding of heterogeneous data
    10.
    发明授权
    Most informative thresholding of heterogeneous data 失效
    最有信息的异构数据门槛

    公开(公告)号:US08055532B2

    公开(公告)日:2011-11-08

    申请号:US11396612

    申请日:2006-04-04

    IPC分类号: G06Q30/00

    摘要: A method of thresholding of a database of customer purchasing history using a computer, includes providing a customer purchase history database including data regarding customer satisfaction, awareness of vendor brands, previous purchasing history, and size of customer budget, providing a predetermined threshold regarding the data, establishing, in the computer, boundaries surrounding the predetermined threshold, splitting the data, in the computer, to maximize the differences in the data across the split; generating, in the computer, a model of the data, in the computer, based upon the split, and allocating marketing resources based upon the model.

    摘要翻译: 使用计算机对客户采购历史数据库进行阈值化的方法包括提供客户购买历史数据库,其中包括关于客户满意度的信息,供应商品牌的意识,先前的采购历史和客户预算的大小,提供关于数据的预定阈值 在计算机中建立围绕预定阈值的边界,在计算机中分割数据以最大化跨越分割的数据的差异; 在计算机中,在计算机中基于分割生成数据的模型,并基于模型分配营销资源。