Abstract:
A wipe having at least one nanofiber layer including an commingled configuration providing low linting, low pilling and high liquid absorbency and method of making same is described. A nanofiber layer is configured from a commingled nanofiber precursor layer of micro- or macrofibers that is subjected to splittable, friable or chemical methods to provide the nanofiber layer. Multiple layer wipes including a commingled nanofiber layer web produced from a commingled nanofiber precursor layer and micro- or macrofiber layer are also described.
Abstract:
The present invention is directed to a high surface area fibers and an improved filter composite media made from the same. More specifically, the composite media preferably comprises a winged-fiber layer having high surface area fibers for increased absorption and strength and a meltblown layer for additional filtration. In one preferred embodiment the high surface area fibers have a middle region with a plurality of projections that define a plurality of channels, which increases the surface area of the fiber. In one preferred embodiment, the high surface area fiber has a specific surface area of about 140,000 cm2 /g or higher and a denier of about 1.0 to about 2.0. The high surface area fiber of the present invention is made using a bicomponent extrusion process using a thermoplastic polymer and a dissolvable sheath.
Abstract:
The present invention is directed to a high surface area fibers and an improved filter composite media made from the same. More specifically, the composite media preferably comprises a winged-fiber layer having high surface area fibers for increased absorption and strength and a meltblown layer for additional filtration. In one preferred embodiment the high surface area fibers have a middle region with a plurality of projections that define a plurality of channels, which increases the surface area of the fiber. In one preferred embodiment, the high surface area fiber has a specific surface area of about 140,000 cm2/g or higher and a denier of about 1.0 to about 2.0. The high surface area fiber of the present invention is made using a bicomponent extrusion process using a thermoplastic polymer and a dissolvable sheath.
Abstract:
The present invention is directed to a high surface area fiber and method for making the same. The fiber includes a co-extruded internal fiber and an external sheath that is washed with a solvent to remove the dissolvable external sheath, the resulting fiber having a longitudinal axis and a cross-section, the cross-section having a middle region and projections extending from the middle region.
Abstract:
The present invention is directed to a high surface area fiber and textiles made from the same. In one preferred embodiment the fiber has a middle region with a plurality of projections that define a plurality of channels, which increases the surface area of the fiber. In one preferred embodiment, the fiber has a specific surface area of about 140,000 cm2/g or higher and a denier of about 1.0 to about 2.0. The fiber of the present invention is made using a bicomponent extrusion process using a thermoplastic polymer and a dissolvable sheath.
Abstract:
The present invention is directed to a high surface area fiber and textiles made from the same. In one preferred embodiment the fiber has a middle region with a plurality of projections that define a plurality of channels, which increases the surface area of the fiber. In one preferred embodiment, the fiber has a specific surface area of about 140,000 cm2/g or higher and a denier of about 1.0 to about 2.0. The fiber of the present invention is made using a bicomponent extrusion process using a thermoplastic polymer and a dissolvable sheath.